--- license: mit tags: - yolo11 - ultralytics - image-segmentation - deep-learning - satellite - rso-detection datasets: - custom library_name: ultralytics base_model: yolo11 pipeline_tag: image-segmentation inference: true widget: - src: "example_image.jpg" example_title: "RSO Detection" model-index: - name: best results: - task: type: image-segmentation name: Instance Segmentation dataset: name: RSO Detection Dataset type: custom metrics: - name: Mean Average Precision (mAP@50) type: mean_average_precision value: 0.8750 - name: Mean Average Precision (mAP@50-95) type: mean_average_precision value: 0.6194 fine-tuned-from: Ultralytics/YOLO11 labels: - streak metadata: label2id: streak: 0 id2label: 0: streak --- # best ## Model Information This is a YOLO11-based segmentation model for detecting Resident Space Objects (RSOs) in satellite imagery. ## Classes - **streak**: Class 0 ## Usage ```python from huggingface_hub import InferenceClient client = InferenceClient(model="best") result = client.image_segmentation(image) ``` ## Training Metrics - mAP@50: 0.8750 - mAP@50-95: 0.6194