--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3404 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 80 | 1.7388 | 0.4188 | | No log | 2.0 | 160 | 1.5325 | 0.4313 | | No log | 3.0 | 240 | 1.3682 | 0.4938 | | No log | 4.0 | 320 | 1.3711 | 0.4813 | | No log | 5.0 | 400 | 1.4485 | 0.425 | | No log | 6.0 | 480 | 1.2649 | 0.5 | | 1.2824 | 7.0 | 560 | 1.3907 | 0.4813 | | 1.2824 | 8.0 | 640 | 1.4983 | 0.4437 | | 1.2824 | 9.0 | 720 | 1.2882 | 0.5625 | | 1.2824 | 10.0 | 800 | 1.3375 | 0.5375 | | 1.2824 | 11.0 | 880 | 1.2640 | 0.5437 | | 1.2824 | 12.0 | 960 | 1.3920 | 0.5188 | | 0.5037 | 13.0 | 1040 | 1.3629 | 0.575 | | 0.5037 | 14.0 | 1120 | 1.4067 | 0.5625 | | 0.5037 | 15.0 | 1200 | 1.3189 | 0.5813 | | 0.5037 | 16.0 | 1280 | 1.3454 | 0.575 | | 0.5037 | 17.0 | 1360 | 1.5200 | 0.5312 | | 0.5037 | 18.0 | 1440 | 1.3378 | 0.6062 | | 0.2616 | 19.0 | 1520 | 1.4539 | 0.5563 | | 0.2616 | 20.0 | 1600 | 1.4415 | 0.5437 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3