razerblade072611
commited on
Commit
·
82f5e81
1
Parent(s):
6c8a6af
Update README.md
Browse files
README.md
CHANGED
@@ -1,81 +1,58 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import os
|
4 |
-
import sys
|
5 |
|
|
|
|
|
6 |
import nltk
|
7 |
-
import numpy as np
|
8 |
import pyttsx3
|
9 |
import spacy
|
10 |
-
import spacy as nlp
|
11 |
import speech_recognition as sr
|
12 |
import torch
|
13 |
-
import
|
14 |
-
from nltk.
|
15 |
-
|
16 |
-
|
17 |
-
from
|
18 |
-
from
|
19 |
-
|
20 |
-
|
21 |
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
print("nltk version:", nltk.__version__)
|
26 |
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
# Download necessary NLTK resources
|
37 |
nltk.download('punkt')
|
38 |
-
nltk.download('stopwords')
|
39 |
nltk.download('wordnet')
|
40 |
-
nltk.download('
|
41 |
-
|
42 |
-
# Load the spaCy model
|
43 |
-
nlp = spacy.load('en_core_web_sm')
|
44 |
-
|
45 |
-
# Define a text input
|
46 |
-
text = "Example text to process"
|
47 |
-
|
48 |
-
# Process the text using the nlp object
|
49 |
-
doc = nlp(text)
|
50 |
-
|
51 |
-
# Extract named entities from the processed text
|
52 |
-
named_entities = []
|
53 |
-
for entity in doc.ents:
|
54 |
-
if entity.label_ in ['PERSON', 'ORG', 'GPE']:
|
55 |
-
named_entities.append(entity.text)
|
56 |
-
|
57 |
-
# Print the extracted named entities
|
58 |
-
print(named_entities)
|
59 |
-
|
60 |
-
# Load the API key from the environment file
|
61 |
-
dotenv_path = './API_KEY.env'
|
62 |
-
(dotenv_path)
|
63 |
|
64 |
# Check if GPU is available and set the device accordingly
|
65 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Initialize the speech engine
|
68 |
speech_engine = pyttsx3.init()
|
69 |
|
70 |
# Get the list of available voices
|
71 |
-
voices = speech_engine.getProperty('voices')
|
72 |
-
for voice in voices:
|
73 |
-
print(voice.id, voice.name)
|
74 |
-
|
75 |
-
# Set the desired voice
|
76 |
-
voice_id = "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\TTS_MS_EN-GB_HAZEL_11.0 Microsoft Hazel Desktop - English (Great Britain)"
|
77 |
-
speech_engine.setProperty('voice', voice_id)
|
78 |
-
|
79 |
voices = speech_engine.getProperty('voices')
|
80 |
for voice in voices:
|
81 |
print(voice.id, voice.name)
|
@@ -96,28 +73,45 @@ if voice_id:
|
|
96 |
else:
|
97 |
print("Desired voice not found.")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
class CommonModule:
|
101 |
-
def __init__(self, model, name, param1, param2):
|
102 |
# Initialize the instance variables using the provided arguments
|
103 |
-
self.
|
104 |
self.name = name
|
105 |
self.param1 = param1
|
106 |
self.param2 = param2
|
107 |
-
self.
|
|
|
|
|
108 |
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
109 |
-
self.gpt3_model =
|
110 |
self.gpt3_model.to(device) # Move model to the device (GPU or CPU)
|
111 |
-
|
|
|
|
|
|
|
|
|
112 |
self.sentiment_module = SentimentAnalysisModule()
|
113 |
self.speech_engine = speech_engine # Assign the initialized speech engine
|
114 |
|
115 |
-
self.max_sequence_length =
|
116 |
self.num_beams = 4 # Reduce the value for faster response
|
117 |
self.no_repeat_ngram_size = 2
|
118 |
self.temperature = 0.3
|
119 |
self.response_cache = {} # Cache for storing frequently occurring responses
|
120 |
|
|
|
|
|
|
|
|
|
|
|
121 |
def reset_conversation(self):
|
122 |
self.memory_module.reset_memory()
|
123 |
|
@@ -128,30 +122,41 @@ class CommonModule:
|
|
128 |
return self.response_cache.get(entity)
|
129 |
return None
|
130 |
|
131 |
-
def
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
prompt,
|
137 |
-
do_sample=True,
|
138 |
-
min_length=10,
|
139 |
-
max_length=50,
|
140 |
-
num_return_sequences=2,
|
141 |
-
temperature=0.3
|
142 |
-
)
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
return generated_response
|
147 |
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
def process_input(self, input_text, conversation_history):
|
151 |
named_entities = list(self.memory_module.get_named_entities())
|
152 |
for entity in named_entities:
|
153 |
if entity in input_text:
|
154 |
-
response =
|
155 |
self.memory_module.add_to_memory(response)
|
156 |
return response
|
157 |
|
@@ -159,198 +164,160 @@ class CommonModule:
|
|
159 |
if '?' in input_text:
|
160 |
return "You're making me angry, you wouldn't like me when I'm angry."
|
161 |
|
162 |
-
# Check if the input
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
else:
|
169 |
-
return "
|
170 |
|
171 |
-
# Retrieve
|
172 |
-
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
self.cache_response(input_text, response)
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
return response
|
183 |
|
|
|
184 |
self.memory_module.add_to_memory(response)
|
|
|
185 |
return response
|
186 |
|
187 |
-
def cache_response(self, input_text, response):
|
188 |
-
self.response_cache[input_text] = response
|
189 |
|
190 |
-
|
191 |
-
if conversation_history is None:
|
192 |
-
conversation_history = []
|
193 |
-
conversation_history.append(text)
|
194 |
-
full_text = "\n".join(conversation_history)
|
195 |
-
print(text)
|
196 |
-
self.speech_engine.say(text)
|
197 |
-
self.speech_engine.runAndWait()
|
198 |
|
199 |
-
def listen(self):
|
200 |
-
recognizer = sr.Recognizer()
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
|
206 |
-
try:
|
207 |
-
user_input = recognizer.recognize_google(audio)
|
208 |
-
print("You said:", user_input)
|
209 |
-
return user_input
|
210 |
-
except sr.UnknownValueError:
|
211 |
-
print("Sorry, I could not understand your speech.")
|
212 |
-
except sr.RequestError as e:
|
213 |
-
print("Sorry, an error occurred while processing your request. Please try again.")
|
214 |
|
215 |
-
|
|
|
|
|
216 |
|
217 |
-
|
218 |
-
self.reset_conversation()
|
219 |
-
self.speak("Hey, what's up bro? I'm {}".format(self.name))
|
220 |
|
221 |
-
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
self.speak("Nice to meet you, {}! I'm still {}".format(named_entities[0], self.name),
|
234 |
-
conversation_history)
|
235 |
|
236 |
-
conversation_history.append(user_input)
|
237 |
|
238 |
-
# Check if the conversation is over (you can define your own condition here)
|
239 |
-
if user_input == "bye":
|
240 |
-
self.save_memory('C:\\Users\\withe\PycharmProjects\\no hope\\Chat_Bot_Main\\save_memory.json')
|
241 |
-
break
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
}
|
248 |
-
with open(file_path, 'w') as file:
|
249 |
-
json.dump(data, file)
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
self.memory_module.named_entities = set(memory_data['named_entities'])
|
254 |
|
255 |
|
256 |
class MemoryModule:
|
257 |
-
def __init__(self):
|
258 |
self.memory = []
|
259 |
-
self.
|
260 |
-
self.
|
261 |
-
self.
|
262 |
-
self.named_entities = set() # Set to store named entities like names
|
263 |
|
264 |
-
def
|
265 |
-
|
266 |
-
|
267 |
-
def preprocess_text(self, text):
|
268 |
-
tokens = self.tokenizer(text.lower())
|
269 |
-
tokens = [self.lemmatizer.lemmatize(token) for token in tokens if token.isalnum()]
|
270 |
-
preprocessed_text = ' '.join(tokens)
|
271 |
-
return preprocessed_text
|
272 |
-
|
273 |
-
def add_to_memory(self, text):
|
274 |
-
preprocessed_text = self.preprocess_text(text)
|
275 |
-
self.memory.append(preprocessed_text)
|
276 |
-
|
277 |
-
# Update named entities if any
|
278 |
-
named_entity = self.extract_named_entity(text)
|
279 |
-
if named_entity:
|
280 |
-
self.named_entities.add(named_entity)
|
281 |
-
|
282 |
-
def extract_named_entity(self, text):
|
283 |
-
doc = nlp(text)
|
284 |
-
for entity in doc.ents:
|
285 |
-
if entity.label_ in ['PERSON', 'ORG', 'GPE']:
|
286 |
-
return entity.text
|
287 |
-
return None
|
288 |
-
|
289 |
-
def search_memory(self, keyword):
|
290 |
-
preprocessed_keyword = self.preprocess_text(keyword)
|
291 |
-
vectorized_memory = self.vectorizer.transform(self.memory)
|
292 |
-
vectorized_keyword = self.vectorizer.transform([preprocessed_keyword])
|
293 |
-
similarity_scores = np.dot(vectorized_memory, vectorized_keyword.T).toarray().flatten()
|
294 |
-
sorted_indices = np.argsort(similarity_scores)[::-1]
|
295 |
-
matches = [self.memory[i] for i in sorted_indices if similarity_scores[i] > 0.5]
|
296 |
-
return matches
|
297 |
|
298 |
def reset_memory(self):
|
299 |
self.memory = []
|
300 |
-
self.
|
301 |
|
|
|
|
|
|
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
def
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
return 'negative'
|
317 |
-
else:
|
318 |
-
return 'neutral'
|
319 |
|
320 |
|
321 |
-
# Define an exit handler function
|
322 |
-
def exit_handler(common_module):
|
323 |
-
memory_data = {
|
324 |
-
'memory': common_module.memory_module.memory,
|
325 |
-
'named_entities': list(common_module.memory_module.named_entities)
|
326 |
-
}
|
327 |
-
common_module.save_memory('C:\\Users\\withe\\PycharmProjects\\no hope2\\Chat_Bot1\\save_memory.json')
|
328 |
-
print("Memory data saved successfully.")
|
329 |
|
330 |
-
return memory_data
|
331 |
|
|
|
332 |
|
333 |
-
# Define a method to check if the load_memory.json file exists
|
334 |
-
def check_memory_file(file_path):
|
335 |
-
return os.path.isfile(file_path)
|
336 |
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
name = "Chat bot1"
|
342 |
-
param1 = 'value1'
|
343 |
-
param2 = 'value2'
|
344 |
-
common_module = CommonModule(model, name, param1, param2)
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
|
|
351 |
|
352 |
-
# Register the exit handler
|
353 |
-
atexit.register(exit_handler, common_module)
|
354 |
|
355 |
-
|
356 |
-
common_module.save_memory(memory_file_path)
|
|
|
1 |
+
MAIN_SCRIPT_MODULE
|
2 |
+
(common_module)
|
|
|
|
|
3 |
|
4 |
+
|
5 |
+
import atexit
|
6 |
import nltk
|
|
|
7 |
import pyttsx3
|
8 |
import spacy
|
|
|
9 |
import speech_recognition as sr
|
10 |
import torch
|
11 |
+
from transformers import GPTNeoForCausalLM, AutoTokenizer
|
12 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
13 |
+
import os
|
14 |
+
import json
|
15 |
+
from memory_module import MemoryModule
|
16 |
+
from sentiment_module import SentimentAnalysisModule
|
|
|
|
|
17 |
|
18 |
+
# Get the current directory
|
19 |
+
current_directory = os.getcwd()
|
20 |
|
21 |
+
# Get a list of files and directories in the current directory
|
22 |
+
file_list = os.listdir(current_directory)
|
|
|
23 |
|
24 |
+
# Print the list
|
25 |
+
for file_name in file_list:
|
26 |
+
print(file_name)
|
27 |
|
28 |
+
sia = SentimentIntensityAnalyzer()
|
29 |
+
sentence = "This is a positive sentence."
|
30 |
+
sentiment = sia.polarity_scores(sentence)
|
31 |
|
32 |
+
# Access sentiment scores
|
33 |
+
compound_score = sentiment['compound']
|
34 |
+
positive_score = sentiment['pos']
|
35 |
+
negative_score = sentiment['neg']
|
36 |
|
37 |
+
model_directory = "EleutherAI/gpt-neo-125m"
|
38 |
|
39 |
# Download necessary NLTK resources
|
40 |
nltk.download('punkt')
|
|
|
41 |
nltk.download('wordnet')
|
42 |
+
nltk.download('stopwords')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Check if GPU is available and set the device accordingly
|
45 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
current_device = torch.cuda.current_device()
|
48 |
+
print(f"Using GPU: {torch.cuda.get_device_name(current_device)}")
|
49 |
+
else:
|
50 |
+
print("No GPU available, using CPU.")
|
51 |
|
52 |
# Initialize the speech engine
|
53 |
speech_engine = pyttsx3.init()
|
54 |
|
55 |
# Get the list of available voices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
voices = speech_engine.getProperty('voices')
|
57 |
for voice in voices:
|
58 |
print(voice.id, voice.name)
|
|
|
73 |
else:
|
74 |
print("Desired voice not found.")
|
75 |
|
76 |
+
# Load the spaCy English model
|
77 |
+
nlp = spacy.load('en_core_web_sm')
|
78 |
+
|
79 |
+
# Update the CommonModule instantiation
|
80 |
+
load_memory_file = "load_memory.json"
|
81 |
+
save_memory_file = "save_memory.json"
|
82 |
|
83 |
class CommonModule:
|
84 |
+
def __init__(self, model, name, param1, param2, load_memory_file, save_memory_file):
|
85 |
# Initialize the instance variables using the provided arguments
|
86 |
+
self.memory = [] # Initialize memory as a list
|
87 |
self.name = name
|
88 |
self.param1 = param1
|
89 |
self.param2 = param2
|
90 |
+
self.model = GPTNeoForCausalLM.from_pretrained(model_directory)
|
91 |
+
|
92 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_directory)
|
93 |
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
94 |
+
self.gpt3_model = GPTNeoForCausalLM.from_pretrained(model_directory)
|
95 |
self.gpt3_model.to(device) # Move model to the device (GPU or CPU)
|
96 |
+
|
97 |
+
self.load_memory_file = "C:\\Users\\withe\\PycharmProjects\\no hope2\\Chat_Bot4\\load_memory.json"
|
98 |
+
self.save_memory_file = "C:\\Users\\withe\\PycharmProjects\\no hope2\\Chat_Bot4\\save_memory.json"
|
99 |
+
self.memory_module = MemoryModule(self.load_memory_file, self.save_memory_file)
|
100 |
+
|
101 |
self.sentiment_module = SentimentAnalysisModule()
|
102 |
self.speech_engine = speech_engine # Assign the initialized speech engine
|
103 |
|
104 |
+
self.max_sequence_length = 200 # Decrease the value for faster response
|
105 |
self.num_beams = 4 # Reduce the value for faster response
|
106 |
self.no_repeat_ngram_size = 2
|
107 |
self.temperature = 0.3
|
108 |
self.response_cache = {} # Cache for storing frequently occurring responses
|
109 |
|
110 |
+
# Initialize speech recognition
|
111 |
+
self.recognizer = sr.Recognizer()
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
def reset_conversation(self):
|
116 |
self.memory_module.reset_memory()
|
117 |
|
|
|
122 |
return self.response_cache.get(entity)
|
123 |
return None
|
124 |
|
125 |
+
def generate_gpt2_response(self, input_text, conversation_history):
|
126 |
+
# Prepare the conversation history for GPT-2 input format
|
127 |
+
if len(conversation_history) == 0:
|
128 |
+
gpt2_input = "USER: " + input_text + "\n"
|
129 |
+
else:
|
130 |
+
gpt2_input = "USER: " + conversation_history[-1] + "\n" # Append the user's query
|
131 |
+
gpt2_input += "BOT: " + conversation_history[-2] + "\n" # Append the bot's previous response
|
132 |
+
|
133 |
+
# Append the rest of the conversation history in reverse order
|
134 |
+
for i in range(len(conversation_history) - 3, -1, -2):
|
135 |
+
gpt2_input += "USER: " + conversation_history[i] + "\n"
|
136 |
+
gpt2_input += "BOT: " + conversation_history[i - 1] + "\n"
|
137 |
|
138 |
+
# Append the current user input to the conversation history
|
139 |
+
gpt2_input += "USER: " + input_text + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# Tokenize the input text
|
142 |
+
input_ids = self.tokenizer.encode(gpt2_input, return_tensors='pt')
|
|
|
143 |
|
144 |
+
# Generate response using the GPT-2 model
|
145 |
+
with torch.no_grad():
|
146 |
+
output = self.model.generate(input_ids, max_length=100, num_return_sequences=1)
|
147 |
+
|
148 |
+
# Decode the generated response
|
149 |
+
generated_text = self.tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
150 |
+
|
151 |
+
# Process the GPT-2 response
|
152 |
+
response = generated_text.strip().split("\n")[-1] # Extract the last line (bot's response)
|
153 |
+
return response
|
154 |
|
155 |
def process_input(self, input_text, conversation_history):
|
156 |
named_entities = list(self.memory_module.get_named_entities())
|
157 |
for entity in named_entities:
|
158 |
if entity in input_text:
|
159 |
+
response = self.generate_gpt2_response(input_text, conversation_history)
|
160 |
self.memory_module.add_to_memory(response)
|
161 |
return response
|
162 |
|
|
|
164 |
if '?' in input_text:
|
165 |
return "You're making me angry, you wouldn't like me when I'm angry."
|
166 |
|
167 |
+
# Check if the input is a greeting
|
168 |
+
greetings = ['hello', 'hi', 'hey', 'hola']
|
169 |
+
for greeting in greetings:
|
170 |
+
if greeting in input_text.lower():
|
171 |
+
return "Hello! How can I assist you today?"
|
172 |
+
|
173 |
+
# Check if the input is a statement about the model
|
174 |
+
if self.name.lower() in input_text.lower():
|
175 |
+
return "Yes, I am {}. How can I assist you today?".format(self.name)
|
176 |
+
|
177 |
+
# Check if the input is a statement about the creator
|
178 |
+
if 'creator' in input_text.lower():
|
179 |
+
return "I was created by {}.".format(self.param1)
|
180 |
+
|
181 |
+
# Check if the input is a sentiment analysis request
|
182 |
+
if 'sentiment' in input_text.lower():
|
183 |
+
sentiment = self.sentiment_module.analyze_sentiment(input_text)
|
184 |
+
if sentiment == 'positive':
|
185 |
+
return "The sentiment of the text is positive."
|
186 |
+
elif sentiment == 'negative':
|
187 |
+
return "The sentiment of the text is negative."
|
188 |
else:
|
189 |
+
return "The sentiment of the text is neutral."
|
190 |
|
191 |
+
# Retrieve a cached response if available
|
192 |
+
cached_response = self.retrieve_cached_response(input_text)
|
193 |
+
if cached_response:
|
194 |
+
return cached_response
|
195 |
|
196 |
+
# Generate a response using GPT-2
|
197 |
+
response = self.generate_gpt2_response(input_text, conversation_history)
|
|
|
198 |
|
199 |
+
# Update the conversation history and cache the response
|
200 |
+
conversation_history.append(input_text)
|
201 |
+
conversation_history.append(response)
|
202 |
+
self.response_cache[input_text] = response
|
|
|
203 |
|
204 |
+
# Update memory with the generated response
|
205 |
self.memory_module.add_to_memory(response)
|
206 |
+
|
207 |
return response
|
208 |
|
|
|
|
|
209 |
|
210 |
+
common_module = CommonModule(model_directory, "Chatbot", "John Doe", "Jane Smith", load_memory_file, save_memory_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
|
|
|
|
212 |
|
213 |
+
def text_to_speech(text):
|
214 |
+
common_module.speech_engine.say(text)
|
215 |
+
common_module.speech_engine.runAndWait()
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
def exit_handler():
|
219 |
+
common_module.reset_conversation()
|
220 |
+
|
221 |
|
222 |
+
atexit.register(exit_handler)
|
|
|
|
|
223 |
|
224 |
+
recognizer = sr.Recognizer()
|
225 |
|
226 |
+
while True:
|
227 |
+
with sr.Microphone() as source:
|
228 |
+
print("Listening...")
|
229 |
+
audio = recognizer.listen(source)
|
230 |
|
231 |
+
try:
|
232 |
+
user_input = recognizer.recognize_google(audio)
|
233 |
+
print("User:", user_input)
|
234 |
+
except sr.UnknownValueError:
|
235 |
+
print("Sorry, I could not understand your speech.")
|
236 |
+
continue
|
237 |
+
except sr.RequestError:
|
238 |
+
print("Sorry, the speech recognition service is currently unavailable.")
|
239 |
+
continue
|
240 |
|
241 |
+
response = common_module.process_input(user_input, [])
|
242 |
+
print("Bot:", response)
|
243 |
+
text_to_speech(response)
|
|
|
|
|
244 |
|
|
|
245 |
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
MEMORY_MODULE
|
248 |
+
|
249 |
+
import json
|
250 |
+
import spacy
|
|
|
|
|
|
|
251 |
|
252 |
+
# Load the spaCy English model
|
253 |
+
nlp = spacy.load('en_core_web_sm')
|
|
|
254 |
|
255 |
|
256 |
class MemoryModule:
|
257 |
+
def __init__(self, load_file, save_file):
|
258 |
self.memory = []
|
259 |
+
self.load_file = load_file
|
260 |
+
self.save_file = save_file
|
261 |
+
self.load_memory()
|
|
|
262 |
|
263 |
+
def add_to_memory(self, statement):
|
264 |
+
self.memory.append(statement)
|
265 |
+
self.save_memory()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
def reset_memory(self):
|
268 |
self.memory = []
|
269 |
+
self.save_memory()
|
270 |
|
271 |
+
def save_memory(self):
|
272 |
+
with open(self.save_file, 'w') as file:
|
273 |
+
json.dump(self.memory, file)
|
274 |
|
275 |
+
def load_memory(self):
|
276 |
+
try:
|
277 |
+
with open(self.load_file, 'r') as file:
|
278 |
+
loaded_memory = json.load(file)
|
279 |
+
if isinstance(loaded_memory, list):
|
280 |
+
self.memory = loaded_memory
|
281 |
+
else:
|
282 |
+
print("Loaded memory is not a list. Starting with an empty memory.")
|
283 |
+
except FileNotFoundError:
|
284 |
+
print("Load memory file not found. Starting with an empty memory.")
|
285 |
|
286 |
+
def get_named_entities(self):
|
287 |
+
named_entities = set()
|
288 |
+
for statement in self.memory:
|
289 |
+
doc = nlp(statement)
|
290 |
+
for entity in doc.ents:
|
291 |
+
if entity.label_:
|
292 |
+
named_entities.add(entity.text)
|
293 |
+
return named_entities
|
294 |
|
295 |
+
|
296 |
+
memory_module = MemoryModule(
|
297 |
+
r"C:\Users\withe\PycharmProjects\no hope2\Chat_Bot4\load_memory.json",
|
298 |
+
r"C:\Users\withe\PycharmProjects\no hope2\Chat_Bot4\save_memory.json"
|
299 |
+
)
|
|
|
|
|
|
|
300 |
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
|
|
303 |
|
304 |
+
SENTIMENT_MODULE
|
305 |
|
|
|
|
|
|
|
306 |
|
307 |
|
308 |
+
class SentimentAnalysisModule:
|
309 |
+
def __init__(self):
|
310 |
+
self.sia = SentimentIntensityAnalyzer()
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
def analyze_sentiment(self, text):
|
313 |
+
sentiment = self.sia.polarity_scores(text)
|
314 |
+
compound_score = sentiment['compound']
|
315 |
+
if compound_score >= 0.05:
|
316 |
+
return 'positive'
|
317 |
+
elif compound_score <= -0.05:
|
318 |
+
return 'negative'
|
319 |
+
else:
|
320 |
+
return 'neutral'
|
321 |
|
|
|
|
|
322 |
|
323 |
+
|
|