|
|
|
from transformers import Pipeline, pipeline, AutoModelForSeq2SeqLM, AutoTokenizer |
|
from transformers.tokenization_utils_base import TruncationStrategy |
|
from torch import Tensor |
|
import html.parser |
|
import unicodedata |
|
import sys, os |
|
import re |
|
import pickle |
|
from tqdm.auto import tqdm |
|
import operator |
|
from datasets import load_dataset |
|
|
|
|
|
def basic_tokenise(string): |
|
|
|
for char in r',.;?!:)("…-': |
|
string = re.sub('(?<! )' + re.escape(char) + '+', ' ' + char, string) |
|
for char in '\'"’': |
|
string = re.sub(char + '(?! )' , char + ' ', string) |
|
return string.strip() |
|
|
|
def homogenise(sent): |
|
sent = sent.lower() |
|
|
|
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ" |
|
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs" |
|
table = sent.maketrans(replace_from, replace_into) |
|
return sent.translate(table) |
|
|
|
|
|
def _wedit_dist_init(len1, len2): |
|
lev = [] |
|
for i in range(len1): |
|
lev.append([0] * len2) |
|
for i in range(len1): |
|
lev[i][0] = i |
|
for j in range(len2): |
|
lev[0][j] = j |
|
return lev |
|
|
|
|
|
def _wedit_dist_step( |
|
lev, i, j, s1, s2, last_left, last_right, transpositions=False |
|
): |
|
c1 = s1[i - 1] |
|
c2 = s2[j - 1] |
|
|
|
|
|
a = lev[i - 1][j] + _wedit_dist_deletion_cost(c1,c2) |
|
|
|
b = lev[i][j - 1] + _wedit_dist_insertion_cost(c1,c2) |
|
|
|
c = lev[i - 1][j - 1] + (_wedit_dist_substitution_cost(c1, c2) if c1 != c2 else 0) |
|
|
|
|
|
lev[i][j] = min(a, b, c) |
|
|
|
def _wedit_dist_backtrace(lev): |
|
i, j = len(lev) - 1, len(lev[0]) - 1 |
|
alignment = [(i, j, lev[i][j])] |
|
|
|
while (i, j) != (0, 0): |
|
directions = [ |
|
(i - 1, j), |
|
(i, j - 1), |
|
(i - 1, j - 1), |
|
] |
|
|
|
direction_costs = ( |
|
(lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j)) |
|
for i, j in directions |
|
) |
|
_, (i, j) = min(direction_costs, key=operator.itemgetter(0)) |
|
|
|
alignment.append((i, j, lev[i][j])) |
|
return list(reversed(alignment)) |
|
|
|
def _wedit_dist_substitution_cost(c1, c2): |
|
if c1 == ' ' and c2 != ' ': |
|
return 1000000 |
|
if c2 == ' ' and c1 != ' ': |
|
return 30 |
|
for c in ",.;-!?'": |
|
if c1 == c and c2 != c: |
|
return 20 |
|
if c2 == c and c1 != c: |
|
return 20 |
|
return 1 |
|
|
|
def _wedit_dist_deletion_cost(c1, c2): |
|
if c1 == ' ': |
|
return 2 |
|
if c2 == ' ': |
|
return 1000000 |
|
return 0.8 |
|
|
|
def _wedit_dist_insertion_cost(c1, c2): |
|
if c1 == ' ': |
|
return 1000000 |
|
if c2 == ' ': |
|
return 2 |
|
return 0.8 |
|
|
|
def wedit_distance_align(s1, s2): |
|
""" |
|
Calculate the minimum Levenshtein edit-distance based alignment |
|
mapping between two strings. The alignment finds the mapping |
|
from string s1 to s2 that minimizes the edit distance cost. |
|
For example, mapping "rain" to "shine" would involve 2 |
|
substitutions, 2 matches and an insertion resulting in |
|
the following mapping: |
|
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)] |
|
NB: (0, 0) is the start state without any letters associated |
|
See more: https://web.stanford.edu/class/cs124/lec/med.pdf |
|
In case of multiple valid minimum-distance alignments, the |
|
backtrace has the following operation precedence: |
|
1. Skip s1 character |
|
2. Skip s2 character |
|
3. Substitute s1 and s2 characters |
|
The backtrace is carried out in reverse string order. |
|
This function does not support transposition. |
|
:param s1, s2: The strings to be aligned |
|
:type s1: str |
|
:type s2: str |
|
:rtype: List[Tuple(int, int)] |
|
""" |
|
|
|
len1 = len(s1) |
|
len2 = len(s2) |
|
lev = _wedit_dist_init(len1 + 1, len2 + 1) |
|
|
|
|
|
for i in range(len1): |
|
for j in range(len2): |
|
_wedit_dist_step( |
|
lev, |
|
i + 1, |
|
j + 1, |
|
s1, |
|
s2, |
|
0, |
|
0, |
|
transpositions=False, |
|
) |
|
|
|
|
|
alignment = _wedit_dist_backtrace(lev) |
|
return alignment |
|
|
|
def space_after(idx, sent): |
|
if idx < len(sent) -1 and sent[idx + 1] == ' ': |
|
return True |
|
return False |
|
|
|
def space_before(idx, sent): |
|
if idx > 0 and sent[idx - 1] == ' ': |
|
return True |
|
return False |
|
|
|
|
|
class NormalisationPipeline(Pipeline): |
|
|
|
def __init__(self, beam_size=5, batch_size=32, tokenise_func=None, cache_file=None, **kwargs): |
|
self.beam_size = beam_size |
|
|
|
if tokenise_func is not None: |
|
self.classic_tokenise = tokenise_func |
|
else: |
|
self.classic_tokenise = basic_tokenise |
|
|
|
|
|
self.lexicon_orig, self.lexicon_homog = self.load_lexicon(cache_file=cache_file) |
|
super().__init__(**kwargs) |
|
|
|
|
|
def load_lexicon(self, cache_file=None): |
|
orig_words = [] |
|
homog_words = {} |
|
remove = set([]) |
|
|
|
|
|
if cache_file is not None and os.path.exists(cache_file): |
|
return pickle.load(open(cache_file, 'rb')) |
|
dataset = load_dataset("sagot/lefff_morpho") |
|
|
|
for entry_dict in dataset['test']: |
|
entry = entry_dict['form'] |
|
orig_words.append(entry.lower()) |
|
if homogenise(entry) not in homog_words: |
|
homog_words[homogenise(entry)] = entry |
|
else: |
|
remove.add(homogenise(entry)) |
|
|
|
for entry in remove: |
|
del homog_words[entry] |
|
|
|
if cache_file is not None: |
|
pickle.dump((orig_words, homog_words), open(cache_file, 'wb')) |
|
return orig_words, homog_words |
|
|
|
def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs): |
|
preprocess_params = {} |
|
if truncation is not None: |
|
preprocess_params["truncation"] = truncation |
|
|
|
forward_params = generate_kwargs |
|
|
|
postprocess_params = {} |
|
|
|
if clean_up_tokenisation_spaces is not None: |
|
postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces |
|
|
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
|
|
def check_inputs(self, input_length: int, min_length: int, max_length: int): |
|
""" |
|
Checks whether there might be something wrong with given input with regard to the model. |
|
""" |
|
return True |
|
|
|
def make_printable(self, s): |
|
'''Replace non-printable characters in a string.''' |
|
return s.translate(NOPRINT_TRANS_TABLE) |
|
|
|
|
|
def normalise(self, line): |
|
|
|
|
|
for before, after in [('[«»\“\”]', '"'), |
|
('[‘’]', "'"), |
|
(' +', ' '), |
|
('\"+', '"'), |
|
("'+", "'"), |
|
('^ *', ''), |
|
(' *$', '')]: |
|
line = re.sub(before, after, line) |
|
return line.strip() + ' </s>' |
|
|
|
def _parse_and_tokenise(self, *args, truncation): |
|
prefix = "" |
|
if isinstance(args[0], list): |
|
if self.tokenizer.pad_token_id is None: |
|
raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input") |
|
args = ([prefix + arg for arg in args[0]],) |
|
padding = True |
|
|
|
elif isinstance(args[0], str): |
|
args = (prefix + args[0],) |
|
padding = False |
|
else: |
|
raise ValueError( |
|
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" |
|
) |
|
inputs = [self.normalise(x) for x in args] |
|
inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework) |
|
toks = [] |
|
for tok_ids in inputs.input_ids: |
|
toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids))) |
|
|
|
if "token_type_ids" in inputs: |
|
del inputs["token_type_ids"] |
|
return inputs |
|
|
|
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): |
|
inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs) |
|
return inputs |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
in_b, input_length = model_inputs["input_ids"].shape |
|
|
|
generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length) |
|
generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length) |
|
generate_kwargs['num_beams'] = self.beam_size |
|
self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"]) |
|
output_ids = self.model.generate(**model_inputs, **generate_kwargs) |
|
out_b = output_ids.shape[0] |
|
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) |
|
return {"output_ids": output_ids} |
|
|
|
def postprocess(self, model_outputs, clean_up_tokenisation_spaces=False): |
|
records = [] |
|
for output_ids in model_outputs["output_ids"][0]: |
|
record = { |
|
"text": self.tokenizer.decode( |
|
output_ids, |
|
skip_special_tokens=True, |
|
clean_up_tokenisation_spaces=clean_up_tokenisation_spaces, |
|
) |
|
} |
|
records.append(record) |
|
return records |
|
|
|
def postprocess_correct_sents(self, alignment, pred_sent_tok): |
|
|
|
print(alignment) |
|
output = [] |
|
|
|
|
|
|
|
len_diff_orig, len_diff_pred = 0, 0 |
|
pred_idxs = [] |
|
start = 0 |
|
for i, char in enumerate(re.sub(' +', ' ', pred_sent_tok) + " "): |
|
if char == " ": |
|
pred_idxs.append((start, i-1)) |
|
start = i+1 |
|
print(pred_idxs) |
|
print('°°°°°°°°°°°°°°') |
|
suffix_pred_sent = pred_sent |
|
for i, (orig_word, pred_word, _) in enumerate(alignment): |
|
|
|
start_idx, end_idx = 1, 1 |
|
postproc_word, alignment = self.postprocess_correct_word(orig_word, pred_word, alignment) |
|
|
|
|
|
|
|
|
|
output.append(postproc_word) |
|
return re.sub(' +', ' ', ' '.join(output)), alignment |
|
|
|
def postprocess_correct_word(self, orig_word, pred_word, alignment): |
|
|
|
if pred_word.lower() in self.lexicon_orig: |
|
return pred_word, alignment |
|
|
|
if orig_word.lower() in self.lexicon_orig: |
|
return orig_word, alignment |
|
pred_replacement = self.lexicon_homog.get(homogenise(pred_word), None) |
|
|
|
if pred_replacement is not None: |
|
alignment = (alignment[0], pred_replacement, alignment[2]) |
|
return pred_replacement, alignment |
|
orig_replacement = self.lexicon_homog.get(homogenise(orig_word), None) |
|
|
|
if orig_replacement is not None: |
|
alignment = (orig_replacement, alignment[1], alignment[2]) |
|
return orig_replacement, alignment |
|
|
|
return orig_word, alignment |
|
|
|
def get_caps(self, word): |
|
first, second, allcaps = False, False, False |
|
if len(word) > 0 and word[0].upper() == word[0]: |
|
first = True |
|
if len(word) > 1 and word[1].upper() == word[1]: |
|
second = True |
|
if word.upper() == word: |
|
allcaps = True |
|
return first, second, allcaps |
|
|
|
def set_caps(self, word, first, second, allcaps): |
|
if allcaps: |
|
return word.upper() |
|
elif first and second: |
|
return word[0].upper() + word[1].upper() + word[2:] |
|
elif first: |
|
return word[0].upper() |
|
elif second: |
|
return word[1].upper() |
|
else: |
|
return word |
|
|
|
def lexicon_lookup(self, candidate): |
|
norm_candidate = homogenise(candidate.lower()) |
|
replacements = [] |
|
for candidate_word in candidate.split('▁'): |
|
capitals = self.get_caps(candidate_word) |
|
replacements.append([]) |
|
for word in self.lexicon: |
|
if homogenise(word.lower()) == candidate_word: |
|
if len(replacements[-1]) > 0: |
|
return None |
|
replacements[-1].append(self.set_caps(candidate, *capitals)) |
|
|
|
if [] not in replacements: |
|
return ' '.join([x[0] for x in replacements]) |
|
else: |
|
return None |
|
|
|
def __call__(self, *args, **kwargs): |
|
r""" |
|
Generate the output text(s) using text(s) given as inputs. |
|
Args: |
|
args (`str` or `List[str]`): |
|
Input text for the encoder. |
|
return_tensors (`bool`, *optional*, defaults to `False`): |
|
Whether or not to include the tensors of predictions (as token indices) in the outputs. |
|
return_text (`bool`, *optional*, defaults to `True`): |
|
Whether or not to include the decoded texts in the outputs. |
|
clean_up_tokenisation_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to clean up the potential extra spaces in the text output. |
|
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`): |
|
The truncation strategy for the tokenisation within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE` |
|
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's |
|
max_length instead of throwing an error down the line. |
|
generate_kwargs: |
|
Additional keyword arguments to pass along to the generate method of the model (see the generate method |
|
corresponding to your framework [here](./model#generative-models)). |
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: |
|
- **generated_text** (`str`, present when `return_text=True`) -- The generated text. |
|
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token |
|
ids of the generated text. |
|
""" |
|
|
|
result = super().__call__(*args, **kwargs) |
|
if (isinstance(args[0], list) |
|
and all(isinstance(el, str) for el in args[0]) |
|
and all(len(res) == 1 for res in result)): |
|
output = [] |
|
for i in range(len(result)): |
|
input_sent, pred_sent = args[0][i].strip(), result[i][0]['text'].strip() |
|
alignment, pred_sent_tok = self.align(input_sent, pred_sent) |
|
|
|
char_spans = self.get_char_idx_align(input_sent, pred_sent, alignment) |
|
|
|
output.append({'text': result[i][0]['text'], 'alignment': char_spans}) |
|
return output |
|
|
|
else: |
|
return [{'text': result, 'alignment': self.align(args, result[0]['text'].strip())}] |
|
|
|
def align(self, sent_ref, sent_pred): |
|
sent_ref_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_ref)) |
|
sent_pred_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_pred)) |
|
backpointers = wedit_distance_align(homogenise(sent_ref_tok), homogenise(sent_pred_tok)) |
|
alignment, current_word, seen1, seen2, last_weight = [], ['', ''], [], [], 0 |
|
for i_ref, i_pred, weight in backpointers: |
|
if i_ref == 0 and i_pred == 0: |
|
continue |
|
|
|
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and \ |
|
i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == ' ': |
|
alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', ''] |
|
seen1.append(i_ref) |
|
seen2.append(i_pred) |
|
else: |
|
end_space = '░' |
|
if i_ref <= len(sent_ref_tok) and i_ref not in seen1: |
|
if i_ref > 0: |
|
current_word[0] += sent_ref_tok[i_ref-1] |
|
seen1.append(i_ref) |
|
if i_pred <= len(sent_pred_tok) and i_pred not in seen2: |
|
if i_pred > 0: |
|
current_word[1] += sent_pred_tok[i_pred-1] if sent_pred_tok[i_pred-1] != ' ' else '▁' |
|
end_space = '' if space_after(i_pred, sent_pred_tok) else '░' |
|
seen2.append(i_pred) |
|
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[0].strip() != '': |
|
alignment.append((current_word[0].strip(), current_word[1].strip() + end_space, weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', ''] |
|
|
|
alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight)) |
|
|
|
recovered1 = re.sub(' +', ' ', ' '.join([x[0] for x in alignment])) |
|
recovered2 = re.sub(' +', ' ', ' '.join([x[1] for x in alignment])) |
|
|
|
assert recovered1 == re.sub(' +', ' ', sent_ref_tok), \ |
|
'\n1: ' + re.sub(' +', ' ', recovered1) + "\n1: " + re.sub(' +', ' ', sent_ref_tok) |
|
assert re.sub('[░▁ ]+', '', recovered2) == re.sub('[▁ ]+', '', sent_pred_tok), \ |
|
'\n2: ' + re.sub(' +', ' ', recovered2) + "\n2: " + re.sub(' +', ' ', sent_pred_tok) |
|
return alignment, sent_pred_tok |
|
|
|
|
|
def get_char_idx_align(self, sent_ref, sent_pred, alignment): |
|
|
|
|
|
|
|
covered_ref, covered_pred = 0, 0 |
|
ref_chars = [i for i, character in enumerate(sent_ref) if character not in [' ']] |
|
pred_chars = [i for i, character in enumerate(sent_pred) if character not in [' ']] |
|
align_idx = [] |
|
|
|
for a_ref, a_pred, _ in alignment: |
|
if a_ref == '' and a_pred == '': |
|
continue |
|
a_pred = re.sub(' +', '', a_pred).strip() |
|
span_ref = [ref_chars[covered_ref], ref_chars[covered_ref + len(a_ref) - 1]] |
|
covered_ref += len(a_ref) |
|
span_pred = [pred_chars[covered_pred], pred_chars[covered_pred + max(0, len(a_pred) - 1)]] |
|
covered_pred += max(0, len(a_pred)) |
|
align_idx.append((span_ref, span_pred)) |
|
|
|
return align_idx |
|
|
|
def normalise_text(list_sents, batch_size=32, beam_size=5): |
|
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation", use_auth_token=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation", use_auth_token=True) |
|
normalisation_pipeline = NormalisationPipeline(model=model, |
|
tokenizer=tokeniser, |
|
batch_size=batch_size, |
|
beam_size=beam_size, |
|
cache_file="/home/rbawden/scratch/.normalisation_lefff.pickle") |
|
normalised_outputs = normalisation_pipeline(list_sents) |
|
return normalised_outputs |
|
|
|
def normalise_from_stdin(batch_size=32, beam_size=5): |
|
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation", use_auth_token=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation", use_auth_token=True) |
|
normalisation_pipeline = NormalisationPipeline(model=model, |
|
tokenizer=tokeniser, |
|
batch_size=batch_size, |
|
beam_size=beam_size, |
|
cache_file="/home/rbawden/scratch/.normalisation_lefff.pickle") |
|
list_sents = [] |
|
for sent in sys.stdin: |
|
list_sents.append(sent.strip()) |
|
normalised_outputs = normalisation_pipeline(list_sents) |
|
for s, sent in enumerate(normalised_outputs): |
|
alignment=sent['alignment'] |
|
|
|
|
|
print('src = ', list_sents[s]) |
|
print('norm = ', sent) |
|
|
|
for b, a in alignment: |
|
print('input: ' + ''.join([list_sents[s][x] for x in range(b[0], max(len(b), b[1]+1))]) + '') |
|
print('pred: ' + ''.join([sent['text'][x] for x in range(a[0], max(len(a), a[1]+1))]) + '') |
|
|
|
return normalised_outputs |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding') |
|
parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding') |
|
parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN') |
|
args = parser.parse_args() |
|
|
|
if args.input_file is None: |
|
normalise_from_stdin(batch_size=args.batch_size, beam_size=args.beam_size) |
|
else: |
|
list_sents = [] |
|
with open(args.input_file) as fp: |
|
for line in fp: |
|
list_sents.append(line.strip()) |
|
output_sents = normalise_text(list_sents, batch_size=args.batch_size, beam_size=args.beam_size) |
|
for output_sent in output_sents: |
|
print(output_sent) |
|
|