|
|
|
from transformers import Pipeline, AutoModelForSeq2SeqLM, AutoTokenizer |
|
from transformers.tokenization_utils_base import TruncationStrategy |
|
from torch import Tensor |
|
import html.parser |
|
import unicodedata |
|
import sys, os |
|
import re |
|
import pickle |
|
from tqdm.auto import tqdm |
|
import operator |
|
from datasets import load_dataset |
|
from transformers.pipelines import PIPELINE_REGISTRY |
|
|
|
def _create_modified_versions(entry=None): |
|
if entry is None: |
|
return [] |
|
return _remove_diacritics(entry), _vu_vowel_to_v_vowel(entry), _vowel_u_to_vowel_v(entry), _consonant_v_to_consonant_u(entry), _y_to_i(entry), _i_to_y(entry), _eacute_to_e_s(entry), _final_eacute_to_e_z(entry), _egrave_to_eacute(entry), _vowelcircumflex_to_vowel_s(entry), _ce_to_ee(entry) |
|
|
|
def _create_further_modified_versions(entry=None): |
|
if entry is None: |
|
return [] |
|
return _s_to_f(entry), _ss_to_ff(entry), _s_to_ff(entry), _first_s_to_f(entry), _first_s_to_ff(entry), _last_s_to_f(entry), _last_s_to_ff(entry), _sit_to_st(entry), _ee_to_ce(entry), _z_to_s(entry) |
|
|
|
def _remove_diacritics(s, allow_alter_length=True): |
|
|
|
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ" |
|
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs" |
|
table = s.maketrans(replace_from, replace_into) |
|
s = s.translate(table) |
|
|
|
if allow_alter_length: |
|
for before, after in [('œ', 'oe'), ('æ', 'ae'), ('ƣ', 'oi'), ('ij', 'ij'), |
|
('ȣ', 'ou'), ('Œ', 'OE'), ('Æ', 'AE'), ('Ƣ', 'OI'), ('IJ', 'IJ'), ('Ȣ', 'OU')]: |
|
s = s.replace(before, after) |
|
s = s.strip('-') |
|
return s |
|
|
|
def _vu_vowel_to_v_vowel(s): |
|
s = re.sub('v([aeiou])' , r'vu\1', s) |
|
return s |
|
|
|
def _vowel_u_to_vowel_v(s): |
|
s = re.sub('([aeiou])u' , r'\1v', s) |
|
return s |
|
|
|
def _consonant_v_to_consonant_u(s): |
|
s = re.sub('([^aeiou])v' , r'\1u', s) |
|
return s |
|
|
|
def _y_to_i(s): |
|
s = s.replace('y', 'i') |
|
return s |
|
|
|
def _i_to_y(s): |
|
s = s.replace('i', 'y') |
|
return s |
|
|
|
def _ss_to_ff(s): |
|
s = s.replace('ss', 'ff') |
|
return s |
|
|
|
def _s_to_f(s): |
|
s = s.replace('s', 'f') |
|
return s |
|
|
|
def _s_to_ff(s): |
|
s = s.replace('s', 'ff') |
|
return s |
|
|
|
def _first_s_to_f(s): |
|
s = re.sub('s' , r'f', s) |
|
return s |
|
|
|
def _last_s_to_f(s): |
|
s = re.sub('^(.*)s' , r'\1f', s) |
|
return s |
|
|
|
def _first_s_to_ff(s): |
|
s = re.sub('s' , r'ff', s) |
|
return s |
|
|
|
def _last_s_to_ff(s): |
|
s = re.sub('^(.*)s' , r'\1ff', s) |
|
return s |
|
|
|
def _ee_to_ce(s): |
|
s = s.replace('ee', 'ce') |
|
return s |
|
|
|
def _sit_to_st(s): |
|
s = s.replace('sit', 'st') |
|
return s |
|
|
|
def _z_to_s(s): |
|
s = s.replace('z', 's') |
|
return s |
|
|
|
def _ce_to_ee(s): |
|
s = s.replace('ce', 'ee') |
|
return s |
|
|
|
def _eacute_to_e_s(s, allow_alter_length=True): |
|
if allow_alter_length: |
|
s = re.sub('é(.)' , r'es\1', s) |
|
s = re.sub('ê(.)' , r'es\1', s) |
|
return s |
|
|
|
def _final_eacute_to_e_z(s, allow_alter_length=True): |
|
if allow_alter_length: |
|
s = re.sub('é$' , r'ez', s) |
|
s = re.sub('ê$' , r'ez', s) |
|
return s |
|
|
|
def _egrave_to_eacute(s): |
|
s = re.sub('è(.)' , r'é\1', s) |
|
return s |
|
|
|
def _vowelcircumflex_to_vowel_s(s, allow_alter_length=True): |
|
if allow_alter_length: |
|
for before, after in [('â', 'as'), ('ê', 'es'), ('î', 'is'), ('ô', 'os'), ('û', 'us')]: |
|
s = s.replace(before, after) |
|
return s |
|
|
|
|
|
def basic_tokenise(string): |
|
|
|
for char in r',.;?!:)("…-': |
|
string = re.sub('(?<! )' + re.escape(char) + '+', ' ' + char, string) |
|
for char in '\'"’': |
|
string = re.sub(char + '(?! )' , char + ' ', string) |
|
return string.strip() |
|
|
|
def basic_tokenise_bs(string): |
|
|
|
string = re.sub('(?<! )([,\.;\?!:\)\("…\'‘’”“«»\-])', r' \1', string) |
|
string = re.sub('([,\.;\?!:\)\("…\'‘’”“«»\-])(?! )' , r'\1 ', string) |
|
return string.strip() |
|
|
|
def homogenise(sent, allow_alter_length=False): |
|
''' |
|
Homogenise an input sentence by lowercasing, removing diacritics, etc. |
|
If allow_alter_length is False, then only applies changes that do not alter |
|
the length of the original sentence (i.e. one-to-one modifications). If True, |
|
then also apply n-m replacements. |
|
''' |
|
sent = sent.lower() |
|
|
|
if allow_alter_length: |
|
for before, after in [('ã', 'an'), ('xoe', 'œ')]: |
|
sent = sent.replace(before, after) |
|
sent = sent.strip('-') |
|
|
|
replace_from = "ǽǣáàâäąãăåćčçďéèêëęěğìíîĩĭıïĺľłńñňòóôõöøŕřśšşťţùúûũüǔỳýŷÿźẑżžÁÀÂÄĄÃĂÅĆČÇĎÉÈÊËĘĚĞÌÍÎĨĬİÏĹĽŁŃÑŇÒÓÔÕÖØŔŘŚŠŞŤŢÙÚÛŨÜǓỲÝŶŸŹẐŻŽſ" |
|
replace_into = "ææaaaaaaaacccdeeeeeegiiiiiiilllnnnoooooorrsssttuuuuuuyyyyzzzzAAAAAAAACCCDEEEEEEGIIIIIIILLLNNNOOOOOORRSSSTTUUUUUUYYYYZZZZs" |
|
table = sent.maketrans(replace_from, replace_into) |
|
return sent.translate(table) |
|
|
|
def get_surrounding_punct(word): |
|
beginning_match = re.match("^(['\-]*)", word) |
|
beginning, end = '', '' |
|
if beginning_match: |
|
beginning = beginning_match.group(1) |
|
end_match = re.match("(['\-]*)$", word) |
|
if end_match: |
|
end = end_match.group(1) |
|
return beginning, end |
|
|
|
|
|
def add_orig_punct(old_word, new_word): |
|
beginning, end = get_surrounding_punct(old_word) |
|
output = '' |
|
if beginning != None and not re.match("^"+re.escape(beginning), new_word): |
|
output += beginning |
|
if new_word != None: |
|
output += new_word |
|
if end != None and not re.match(re.escape(end)+"$", new_word): |
|
output += end |
|
return output |
|
|
|
def get_caps(word): |
|
|
|
word = word.strip("-' ") |
|
first, second, allcaps = False, False, False |
|
if len(word) > 0 and word[0].lower() != word[0]: |
|
first = True |
|
if len(word) > 1 and word[1].lower() != word[1]: |
|
second = True |
|
if word.upper() == word and word.lower() != word: |
|
allcaps = True |
|
return first, second, allcaps |
|
|
|
def set_caps(word, first, second, allcaps): |
|
if word == None: |
|
return None |
|
if allcaps: |
|
return word.upper() |
|
elif first and second: |
|
return word[0].upper() + word[1].upper() + word[2:] |
|
elif first: |
|
if len(word) > 1: |
|
return word[0].upper() + word[1:] |
|
elif len(word) == 1: |
|
return word[0] |
|
else: |
|
return word |
|
elif second: |
|
if len(word) > 2: |
|
return word[0] + word[1].upper() + word[2:] |
|
elif len(word) > 1: |
|
return word[0] + word[1].upper() + word[2:] |
|
elif len(word) == 1: |
|
return word[0] |
|
else: |
|
return word |
|
else: |
|
return word |
|
|
|
|
|
|
|
def _wedit_dist_init(len1, len2): |
|
lev = [] |
|
for i in range(len1): |
|
lev.append([0] * len2) |
|
for i in range(len1): |
|
lev[i][0] = i |
|
for j in range(len2): |
|
lev[0][j] = j |
|
return lev |
|
|
|
|
|
def _wedit_dist_step( |
|
lev, i, j, s1, s2, last_left, last_right, transpositions=False |
|
): |
|
c1 = s1[i - 1] |
|
c2 = s2[j - 1] |
|
|
|
|
|
a = lev[i - 1][j] + _wedit_dist_deletion_cost(c1,c2) |
|
|
|
b = lev[i][j - 1] + _wedit_dist_insertion_cost(c1,c2) |
|
|
|
c = lev[i - 1][j - 1] + (_wedit_dist_substitution_cost(c1, c2) if c1 != c2 else 0) |
|
|
|
|
|
lev[i][j] = min(a, b, c) |
|
|
|
def _wedit_dist_backtrace(lev): |
|
i, j = len(lev) - 1, len(lev[0]) - 1 |
|
alignment = [(i, j, lev[i][j])] |
|
|
|
while (i, j) != (0, 0): |
|
directions = [ |
|
(i - 1, j), |
|
(i, j - 1), |
|
(i - 1, j - 1), |
|
] |
|
|
|
direction_costs = ( |
|
(lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j)) |
|
for i, j in directions |
|
) |
|
_, (i, j) = min(direction_costs, key=operator.itemgetter(0)) |
|
|
|
alignment.append((i, j, lev[i][j])) |
|
return list(reversed(alignment)) |
|
|
|
def _wedit_dist_substitution_cost(c1, c2): |
|
if c1 == ' ' and c2 != ' ': |
|
return 1000000 |
|
if c2 == ' ' and c1 != ' ': |
|
return 30 |
|
for c in ",.;-!?'": |
|
if c1 == c and c2 != c: |
|
return 20 |
|
if c2 == c and c1 != c: |
|
return 20 |
|
return 1 |
|
|
|
def _wedit_dist_deletion_cost(c1, c2): |
|
if c1 == ' ': |
|
return 2 |
|
if c2 == ' ': |
|
return 1000000 |
|
return 0.8 |
|
|
|
def _wedit_dist_insertion_cost(c1, c2): |
|
if c1 == ' ': |
|
return 1000000 |
|
if c2 == ' ': |
|
return 2 |
|
return 0.8 |
|
|
|
def wedit_distance_align(s1, s2): |
|
""" |
|
Calculate the minimum Levenshtein weighted edit-distance based alignment |
|
mapping between two strings. The alignment finds the mapping |
|
from string s1 to s2 that minimizes the edit distance cost, where each |
|
operation is weighted by a dedicated weighting function. |
|
For example, mapping "rain" to "shine" would involve 2 |
|
substitutions, 2 matches and an insertion resulting in |
|
the following mapping: |
|
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)] |
|
NB: (0, 0) is the start state without any letters associated |
|
See more: https://web.stanford.edu/class/cs124/lec/med.pdf |
|
In case of multiple valid minimum-distance alignments, the |
|
backtrace has the following operation precedence: |
|
1. Skip s1 character |
|
2. Skip s2 character |
|
3. Substitute s1 and s2 characters |
|
The backtrace is carried out in reverse string order. |
|
This function does not support transposition. |
|
:param s1, s2: The strings to be aligned |
|
:type s1: str |
|
:type s2: str |
|
:rtype: List[Tuple(int, int)] |
|
""" |
|
|
|
len1 = len(s1) |
|
len2 = len(s2) |
|
lev = _wedit_dist_init(len1 + 1, len2 + 1) |
|
|
|
|
|
for i in range(len1): |
|
for j in range(len2): |
|
_wedit_dist_step( |
|
lev, |
|
i + 1, |
|
j + 1, |
|
s1, |
|
s2, |
|
0, |
|
0, |
|
transpositions=False, |
|
) |
|
|
|
|
|
alignment = _wedit_dist_backtrace(lev) |
|
return alignment |
|
|
|
def _last_left_t_init(sigma): |
|
return {c: 0 for c in sigma} |
|
|
|
def wedit_distance(s1, s2): |
|
""" |
|
Calculate the Levenshtein weighted edit-distance between two strings. |
|
The weighted edit distance is the number of characters that need to be |
|
substituted, inserted, or deleted, to transform s1 into s2, weighted |
|
by a dedicated weighting function. |
|
For example, transforming "rain" to "shine" requires three steps, |
|
consisting of two substitutions and one insertion: |
|
"rain" -> "sain" -> "shin" -> "shine". These operations could have |
|
been done in other orders, but at least three steps are needed. |
|
|
|
Allows specifying the cost of substitution edits (e.g., "a" -> "b"), |
|
because sometimes it makes sense to assign greater penalties to |
|
substitutions. |
|
|
|
This also optionally allows transposition edits (e.g., "ab" -> "ba"), |
|
though this is disabled by default. |
|
|
|
:param s1, s2: The strings to be analysed |
|
:param transpositions: Whether to allow transposition edits |
|
:type s1: str |
|
:type s2: str |
|
:type substitution_cost: int |
|
:type transpositions: bool |
|
:rtype: int |
|
""" |
|
|
|
len1 = len(s1) |
|
len2 = len(s2) |
|
lev = _wedit_dist_init(len1 + 1, len2 + 1) |
|
|
|
|
|
sigma = set() |
|
sigma.update(s1) |
|
sigma.update(s2) |
|
|
|
|
|
last_left_t = _last_left_t_init(sigma) |
|
|
|
|
|
|
|
|
|
for i in range(len1): |
|
last_right_buf = 0 |
|
for j in range(len2): |
|
last_left = last_left_t[s2[j - 1]] |
|
last_right = last_right_buf |
|
if s1[i - 1] == s2[j - 1]: |
|
last_right_buf = j |
|
_wedit_dist_step( |
|
lev, |
|
i + 1, |
|
j + 1, |
|
s1, |
|
s2, |
|
last_left, |
|
last_right, |
|
transpositions=False, |
|
) |
|
last_left_t[s1[i - 1]] = i |
|
return lev[len1-1][len2-1] |
|
|
|
def space_after(idx, sent): |
|
if idx < len(sent) -1 and sent[idx + 1] == ' ': |
|
return True |
|
return False |
|
|
|
def space_before(idx, sent): |
|
if idx > 0 and sent[idx - 1] == ' ': |
|
return True |
|
return False |
|
|
|
|
|
class NormalisationPipeline(Pipeline): |
|
|
|
def __init__(self, beam_size=5, batch_size=32, tokenise_func=None, cache_file=None, no_postproc_lex=False, |
|
no_post_clean=False, **kwargs): |
|
self.beam_size = beam_size |
|
|
|
if tokenise_func is not None: |
|
self.classic_tokenise = tokenise_func |
|
else: |
|
self.classic_tokenise = basic_tokenise |
|
|
|
self.no_post_clean = no_post_clean |
|
self.no_postproc_lex = no_postproc_lex |
|
|
|
if no_postproc_lex: |
|
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = None, None, None |
|
else: |
|
self.orig_lefff_words, self.mapping_to_lefff, self.mapping_to_lefff2 = self.load_lexicon(cache_file=cache_file) |
|
super().__init__(**kwargs) |
|
|
|
|
|
def load_lexicon(self, cache_file=None): |
|
orig_lefff_words = [] |
|
mapping_to_lefff = {} |
|
mapping_to_lefff2 = {} |
|
remove = set([]) |
|
remove2 = set([]) |
|
|
|
|
|
if cache_file is not None and os.path.exists(cache_file): |
|
return pickle.load(open(cache_file, 'rb')) |
|
dataset = load_dataset("sagot/lefff_morpho") |
|
|
|
for entry in set([x['form'].lower() for x in dataset['test']]): |
|
orig_lefff_words.append(entry) |
|
orig_lefff_words.append("-"+entry) |
|
for mod_entry in set(_create_modified_versions(entry)): |
|
if mod_entry in mapping_to_lefff and mapping_to_lefff[mod_entry] != entry: |
|
remove.add(mod_entry) |
|
if mod_entry != mod_entry.upper(): |
|
remove.add(mod_entry) |
|
if mod_entry not in mapping_to_lefff and mod_entry != entry: |
|
mapping_to_lefff[mod_entry] = entry |
|
if mod_entry != mod_entry.upper(): |
|
mapping_to_lefff2[mod_entry.upper()] = entry.upper() |
|
for mod_entry2 in set(_create_modified_versions(mod_entry)): |
|
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry: |
|
remove2.add(mod_entry2) |
|
if mod_entry2 != mod_entry2.upper(): |
|
remove2.add(mod_entry2) |
|
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry: |
|
mapping_to_lefff2[mod_entry2] = entry |
|
if mod_entry2 != mod_entry2.upper(): |
|
mapping_to_lefff2[mod_entry2.upper()] = entry.upper() |
|
for mod_entry2 in set(_create_further_modified_versions(mod_entry)): |
|
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry: |
|
remove2.add(mod_entry2) |
|
if mod_entry2 != mod_entry2.upper(): |
|
remove2.add(mod_entry2) |
|
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry: |
|
mapping_to_lefff2[mod_entry2] = entry |
|
if mod_entry2 != mod_entry2.upper(): |
|
mapping_to_lefff2[mod_entry2.upper()] = entry.upper() |
|
for mod_entry2 in set(_create_further_modified_versions(entry)): |
|
if mod_entry2 in mapping_to_lefff2 and mapping_to_lefff2[mod_entry2] != entry: |
|
remove2.add(mod_entry2) |
|
if mod_entry2 != mod_entry2.upper(): |
|
remove2.add(mod_entry2) |
|
if mod_entry2 not in mapping_to_lefff2 and mod_entry2 != entry: |
|
mapping_to_lefff2[mod_entry2] = entry |
|
if mod_entry2 != mod_entry2.upper(): |
|
mapping_to_lefff2[mod_entry2.upper()] = entry.upper() |
|
|
|
for mod_entry in list(mapping_to_lefff.keys()): |
|
if mod_entry != "": |
|
mapping_to_lefff["-"+mod_entry] = "-"+mapping_to_lefff[mod_entry] |
|
for mod_entry2 in list(mapping_to_lefff2.keys()): |
|
if mod_entry2 != "": |
|
mapping_to_lefff2["-"+mod_entry2] = "-"+mapping_to_lefff2[mod_entry2] |
|
|
|
for entry in remove: |
|
del mapping_to_lefff[entry] |
|
for entry in remove2: |
|
del mapping_to_lefff2[entry] |
|
|
|
if cache_file is not None: |
|
pickle.dump((orig_lefff_words, mapping_to_lefff, mapping_to_lefff2), open(cache_file, 'wb')) |
|
return orig_lefff_words, mapping_to_lefff, mapping_to_lefff2 |
|
|
|
def _sanitize_parameters(self, clean_up_tokenisation_spaces=None, truncation=None, **generate_kwargs): |
|
preprocess_params = {} |
|
if truncation is not None: |
|
preprocess_params["truncation"] = truncation |
|
forward_params = generate_kwargs |
|
postprocess_params = {} |
|
if clean_up_tokenisation_spaces is not None: |
|
postprocess_params["clean_up_tokenisation_spaces"] = clean_up_tokenisation_spaces |
|
|
|
return preprocess_params, forward_params, postprocess_params |
|
|
|
|
|
def check_inputs(self, input_length: int, min_length: int, max_length: int): |
|
""" |
|
Checks whether there might be something wrong with given input with regard to the model. |
|
""" |
|
return True |
|
|
|
def make_printable(self, s): |
|
'''Replace non-printable characters in a string.''' |
|
return s.translate(NOPRINT_TRANS_TABLE) |
|
|
|
|
|
def normalise(self, line): |
|
for before, after in [('[«»\“\”]', '"'), ('[‘’]', "'"), (' +', ' '), ('\"+', '"'), |
|
("'+", "'"), ('^ *', ''), (' *$', '')]: |
|
line = re.sub(before, after, line) |
|
return line.strip() + ' </s>' |
|
|
|
def _parse_and_tokenise(self, *args, truncation): |
|
prefix = "" |
|
if isinstance(args[0], list): |
|
if self.tokenizer.pad_token_id is None: |
|
raise ValueError("Please make sure that the tokeniser has a pad_token_id when using a batch input") |
|
args = ([prefix + arg for arg in args[0]],) |
|
padding = True |
|
|
|
elif isinstance(args[0], str): |
|
args = (prefix + args[0],) |
|
padding = False |
|
else: |
|
raise ValueError( |
|
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" |
|
) |
|
inputs = [self.normalise(x) for x in args] |
|
inputs = self.tokenizer(inputs, padding=padding, truncation=truncation, return_tensors=self.framework) |
|
toks = [] |
|
for tok_ids in inputs.input_ids: |
|
toks.append(" ".join(self.tokenizer.convert_ids_to_tokens(tok_ids))) |
|
|
|
if "token_type_ids" in inputs: |
|
del inputs["token_type_ids"] |
|
return inputs |
|
|
|
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs): |
|
inputs = self._parse_and_tokenise(inputs, truncation=truncation, **kwargs) |
|
return inputs |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
in_b, input_length = model_inputs["input_ids"].shape |
|
generate_kwargs["min_length"] = generate_kwargs.get("min_length", self.model.config.min_length) |
|
generate_kwargs["max_length"] = generate_kwargs.get("max_length", self.model.config.max_length) |
|
generate_kwargs['num_beams'] = self.beam_size |
|
self.check_inputs(input_length, generate_kwargs["min_length"], generate_kwargs["max_length"]) |
|
output_ids = self.model.generate(**model_inputs, **generate_kwargs) |
|
out_b = output_ids.shape[0] |
|
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:]) |
|
return {"output_ids": output_ids} |
|
|
|
def postprocess(self, model_outputs, clean_up_tok_spaces=False): |
|
records = [] |
|
for output_ids in model_outputs["output_ids"][0]: |
|
record = {"text": self.tokenizer.decode(output_ids, skip_special_tokens=True, |
|
clean_up_tokenisation_spaces=clean_up_tok_spaces).strip()} |
|
records.append(record) |
|
return records |
|
|
|
def postprocess_correct_sent(self, alignment): |
|
output = [] |
|
for i, (orig_word, pred_word, _) in enumerate(alignment): |
|
if orig_word != '': |
|
postproc_word = self.postprocess_correct_word(orig_word, pred_word, alignment) |
|
alignment[i] = (orig_word, postproc_word, -1) |
|
return alignment |
|
|
|
def postprocess_correct_word(self, orig_word, pred_word, alignment): |
|
|
|
orig_caps = get_caps(orig_word) |
|
if re.match("^[0-9]+$", orig_word) or re.match("^[XVUI]+$", orig_word): |
|
orig_word = orig_word.replace('U', 'V') |
|
return orig_word |
|
if pred_word.lower() in self.orig_lefff_words: |
|
return set_caps(pred_word, *orig_caps) |
|
|
|
if orig_word.lower() in self.orig_lefff_words: |
|
return orig_word |
|
|
|
pred_replacement = None |
|
|
|
if pred_word != '' and pred_word != ' ': |
|
pred_replacement = self.mapping_to_lefff.get(pred_word, None) |
|
if pred_replacement is not None: |
|
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps)) |
|
|
|
orig_replacement = self.mapping_to_lefff.get(orig_word, None) |
|
if orig_replacement is not None: |
|
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps)) |
|
|
|
|
|
if pred_word != '' and pred_word != ' ': |
|
pred_replacement = self.mapping_to_lefff2.get(pred_word, None) |
|
if pred_replacement is not None: |
|
return add_orig_punct(pred_word, set_caps(pred_replacement, *orig_caps)) |
|
|
|
orig_replacement = self.mapping_to_lefff2.get(orig_word, None) |
|
if orig_replacement is not None: |
|
return add_orig_punct(pred_word, set_caps(orig_replacement, *orig_caps)) |
|
|
|
if orig_word == pred_word: |
|
return orig_word |
|
if orig_word == " " and pred_word == "": |
|
return orig_word |
|
|
|
wed = wedit_distance(pred_word,orig_word) |
|
if wed > 2: |
|
return orig_word |
|
return add_orig_punct(pred_word, set_caps(pred_word, *orig_caps)) |
|
|
|
|
|
def __call__(self, input_sents, **kwargs): |
|
r""" |
|
Generate the output texts using texts given as inputs. |
|
Args: |
|
args (`List[str]`): |
|
Input text for the encoder. |
|
apply_postprocessing (`Bool`): |
|
Apply postprocessing using the lexicon |
|
generate_kwargs: |
|
Additional keyword arguments to pass along to the generate method of the model (see the generate method |
|
corresponding to your framework [here](./model#generative-models)). |
|
Return: |
|
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys: |
|
- **generated_text** (`str`, present when `return_text=True`) -- The generated text. |
|
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token |
|
ids of the generated text. |
|
""" |
|
result = super().__call__(input_sents, **kwargs) |
|
|
|
output = [] |
|
for i in range(len(result)): |
|
input_sent, pred_sent = input_sents[i].strip(), result[i][0]['text'].strip() |
|
input_sent = input_sent.replace('ſ' , 's') |
|
if not self.no_post_clean: |
|
pred_sent = self.post_cleaning(pred_sent) |
|
alignment, pred_sent_tok = self.align(input_sent, pred_sent) |
|
|
|
if not self.no_postproc_lex: |
|
alignment = self.postprocess_correct_sent(alignment) |
|
pred_sent = self.get_pred_from_alignment(alignment) |
|
if not self.no_post_clean: |
|
pred_sent = self.post_cleaning(pred_sent) |
|
char_spans = self.get_char_idx_align(input_sent, pred_sent, alignment) |
|
output.append({'text': pred_sent, 'alignment': char_spans}) |
|
return output |
|
|
|
def post_cleaning(self, s): |
|
s = s.replace(' ' , '') |
|
s = s.replace('ſ' , 's') |
|
s = s.replace('ß' , 'ss') |
|
s = s.replace('&' , 'et') |
|
s = re.sub('ẽ([mbp])' , r'em\1', s) |
|
s = s.replace('ẽ' , 'en') |
|
s = re.sub('ã([mbp])' , r'am\1', s) |
|
s = s.replace('ã' , 'an') |
|
s = re.sub('õ([mbp])' , r'om\1', s) |
|
s = s.replace('õ' , 'on') |
|
s = re.sub('ũ([mbp])' , r'um\1', s) |
|
s = s.replace('ũ' , 'un') |
|
return s |
|
|
|
def align(self, sent_ref, sent_pred): |
|
sent_ref_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_ref)) |
|
sent_pred_tok = self.classic_tokenise(re.sub('[ ]', ' ', sent_pred)) |
|
backpointers = wedit_distance_align(homogenise(sent_ref_tok), homogenise(sent_pred_tok)) |
|
alignment, current_word, seen1, seen2, last_weight = [], ['', ''], [], [], 0 |
|
for i_ref, i_pred, weight in backpointers: |
|
if i_ref == 0 and i_pred == 0: |
|
continue |
|
|
|
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \ |
|
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == ' ' \ |
|
and i_ref not in seen1 and i_pred not in seen2: |
|
|
|
|
|
if current_word[0] == '' and current_word[1] == '': |
|
alignment.append((' ', ' ', weight-last_weight)) |
|
|
|
else: |
|
alignment.append((current_word[0], current_word[1], weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', ''] |
|
seen1.append(i_ref) |
|
seen2.append(i_pred) |
|
|
|
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' \ |
|
and i_pred <= len(sent_pred_tok) and sent_pred_tok[i_pred-1] == '-' \ |
|
and i_ref not in seen1 and i_pred not in seen2 \ |
|
and current_word[0] == '' and current_word[1] == '': |
|
alignment.append((' ', '', weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', '-'] |
|
seen1.append(i_ref) |
|
seen2.append(i_pred) |
|
else: |
|
end_space = '' |
|
|
|
if i_ref <= len(sent_ref_tok) and i_ref not in seen1: |
|
if i_ref > 0: |
|
current_word[0] += sent_ref_tok[i_ref-1] |
|
seen1.append(i_ref) |
|
|
|
if i_pred <= len(sent_pred_tok) and i_pred not in seen2: |
|
if i_pred > 0: |
|
current_word[1] += sent_pred_tok[i_pred-1] if sent_pred_tok[i_pred-1] != ' ' else ' ' |
|
end_space = '' if space_after(i_pred, sent_pred_tok) else '' |
|
seen2.append(i_pred) |
|
if i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[0].strip() != '': |
|
alignment.append((current_word[0].strip(), current_word[1].strip() + end_space, weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', ''] |
|
|
|
elif i_ref <= len(sent_ref_tok) and sent_ref_tok[i_ref-1] == ' ' and current_word[1].strip() == '': |
|
alignment.append((current_word[0], current_word[1], weight-last_weight)) |
|
last_weight = weight |
|
current_word = ['', ''] |
|
seen1.append(i_ref) |
|
seen2.append(i_pred) |
|
|
|
alignment.append((current_word[0].strip(), current_word[1].strip(), weight-last_weight)) |
|
|
|
recovered1 = re.sub(' +', ' ', ' '.join([x[0] for x in alignment])) |
|
recovered2 = re.sub(' +', ' ', ' '.join([x[1] for x in alignment])) |
|
|
|
assert re.sub('[ ]+', ' ', recovered1) == re.sub('[ ]+', ' ', sent_ref_tok), \ |
|
'\n1: *' + re.sub('[ ]+', ' ', recovered1) + "*\n1: *" + re.sub('[ ]+', ' ', sent_ref_tok) + '*' |
|
assert re.sub('[░▁ ]+', '', recovered2) == re.sub('[▁ ]+', '', sent_pred_tok), \ |
|
'\n2: ' + re.sub('[ ]+', ' ', recovered2) + "\n2: " + re.sub('[ ]+', ' ', sent_pred_tok) |
|
return alignment, sent_pred_tok |
|
|
|
def get_pred_from_alignment(self, alignment): |
|
return re.sub(' +', ' ', ''.join([x[1] if x[1] != '' else '\n' for x in alignment]).replace('\n', '')) |
|
|
|
def get_char_idx_align(self, sent_ref, sent_pred, alignment): |
|
covered_ref, covered_pred = 0, 0 |
|
ref_chars = [i for i, character in enumerate(sent_ref)] + [len(sent_ref)] |
|
pred_chars = [i for i, character in enumerate(sent_pred)] + [len(sent_pred)] |
|
align_idx = [] |
|
|
|
for a_ref, a_pred, _ in alignment: |
|
if a_ref == '' and a_pred == '': |
|
covered_pred += 1 |
|
continue |
|
a_pred = re.sub(' +', ' ', a_pred).strip() |
|
span_ref = [ref_chars[covered_ref], ref_chars[covered_ref + len(a_ref)]] |
|
covered_ref += len(a_ref) |
|
span_pred = [pred_chars[covered_pred], pred_chars[covered_pred + len(a_pred)]] |
|
covered_pred += len(a_pred) |
|
align_idx.append((span_ref, span_pred)) |
|
|
|
return align_idx |
|
|
|
def normalise_text(list_sents, batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False): |
|
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation") |
|
normalisation_pipeline = NormalisationPipeline(model=model, |
|
tokenizer=tokeniser, |
|
batch_size=batch_size, |
|
beam_size=beam_size, |
|
cache_file=cache_file, |
|
no_postproc_lex=no_postproc_lex, |
|
no_post_clean=no_post_clean) |
|
normalised_outputs = normalisation_pipeline(list_sents) |
|
return normalised_outputs |
|
|
|
def normalise_from_stdin(batch_size=32, beam_size=5, cache_file=None, no_postproc_lex=False, no_post_clean=False): |
|
tokeniser = AutoTokenizer.from_pretrained("rbawden/modern_french_normalisation") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("rbawden/modern_french_normalisation") |
|
normalisation_pipeline = NormalisationPipeline(model=model, |
|
tokenizer=tokeniser, |
|
batch_size=batch_size, |
|
beam_size=beam_size, |
|
cache_file=cache_file, |
|
no_postproc_lex=no_postproc_lex, |
|
no_post_clean=no_post_clean |
|
) |
|
list_sents = [] |
|
ex = ["7. Qu'vne force plus grande de ſi peu que l'on voudra, que celle auec laquelle l'eau de la hauteur de trente & vn pieds, tend à couler en bas, ſuffit pour faire admettre ce vuide apparent, & meſme ſi grãd que l'on voudra, c'eſt à dire, pour faire des-vnir les corps d'vn ſi grand interualle que l'on voudra, pourueu qu'il n'y ait point d'autre obſtacle à leur ſeparation ny à leur eſloignement, que l'horreur que la Nature a pour ce vuide apparent."] |
|
for sent in sys.stdin: |
|
list_sents.append(sent.strip()) |
|
normalised_outputs = normalisation_pipeline(list_sents) |
|
for s, sent in enumerate(normalised_outputs): |
|
alignment=sent['alignment'] |
|
|
|
print(sent['text']) |
|
|
|
|
|
|
|
|
|
|
|
return normalised_outputs |
|
|
|
|
|
PIPELINE_REGISTRY.register_pipeline( |
|
"modern-french-normalisation", |
|
pipeline_class=NormalisationPipeline, |
|
pt_model=AutoModelForSeq2SeqLM, |
|
default={"pt": ("rbawden/modern_french_normalisation", "main")}, |
|
type="text", |
|
) |
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-k', '--batch_size', type=int, default=32, help='Set the batch size for decoding') |
|
parser.add_argument('-b', '--beam_size', type=int, default=5, help='Set the beam size for decoding') |
|
parser.add_argument('-i', '--input_file', type=str, default=None, help='Input file. If None, read from STDIN') |
|
parser.add_argument('-c', '--cache_lexicon', type=str, default=None, help='Path to cache the lexicon file to speed up loading') |
|
parser.add_argument('-n', '--no_postproc_lex', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output') |
|
parser.add_argument('-m', '--no_post_clean', default=False, action='store_true', help='Deactivate postprocessing to speed up normalisation, but this may degrade the output') |
|
|
|
args = parser.parse_args() |
|
|
|
if args.input_file is None: |
|
normalise_from_stdin(batch_size=args.batch_size, |
|
beam_size=args.beam_size, |
|
cache_file=args.cache_lexicon, |
|
no_postproc_lex=args.no_postproc_lex, |
|
no_post_clean=args.no_post_clean) |
|
else: |
|
list_sents = [] |
|
with open(args.input_file) as fp: |
|
for line in fp: |
|
list_sents.append(line.strip()) |
|
output_sents = normalise_text(list_sents, |
|
batch_size=args.batch_size, |
|
beam_size=args.beam_size, |
|
cache_file=args.cache_lexicon, |
|
no_postproc_lex=args.no_postproc_lex, |
|
no_post_clean=args.no_post_clean) |
|
for output_sent in output_sents: |
|
print(output_sent['text']) |
|
|