raphaelbiojout commited on
Commit
d9a0ef6
·
1 Parent(s): a7da197
Files changed (1) hide show
  1. handler.py +3 -2
handler.py CHANGED
@@ -23,7 +23,7 @@ SAMPLE_RATE = 16000
23
  def whisper_config():
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
25
  whisper_model = "large-v2"
26
- batch_size = 8 # reduce if low on GPU mem, 16 initailly
27
  # change to "int8" if low on GPU mem (may reduce accuracy)
28
  compute_type = "float16" if device == "cuda" else "int8"
29
  return device, batch_size, compute_type, whisper_model
@@ -172,7 +172,7 @@ class EndpointHandler():
172
  def __init__(self, path=""):
173
  # load the model
174
  device, batch_size, compute_type, whisper_model = whisper_config()
175
- self.model = whisperx.load_model(whisper_model, device=device, compute_type=compute_type, threads=2)
176
  # 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 ERIC
177
  # 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 OLD
178
  logger.info(f"Model {whisper_model} initialized")
@@ -230,6 +230,7 @@ class EndpointHandler():
230
  # 2. transcribe
231
  device, batch_size, compute_type, whisper_model = whisper_config()
232
  logger.info("--------------- STARTING TRANSCRIPTION ------------------------")
 
233
  transcription = self.model.transcribe(audio_nparray, batch_size=batch_size,language=language)
234
  if info:
235
  print(transcription["segments"]) # before alignment
 
23
  def whisper_config():
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
25
  whisper_model = "large-v2"
26
+ batch_size = 16 # reduce if low on GPU mem, 16 initailly
27
  # change to "int8" if low on GPU mem (may reduce accuracy)
28
  compute_type = "float16" if device == "cuda" else "int8"
29
  return device, batch_size, compute_type, whisper_model
 
172
  def __init__(self, path=""):
173
  # load the model
174
  device, batch_size, compute_type, whisper_model = whisper_config()
175
+ self.model = whisperx.load_model(whisper_model, device=device, compute_type=compute_type)
176
  # 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 ERIC
177
  # 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 OLD
178
  logger.info(f"Model {whisper_model} initialized")
 
230
  # 2. transcribe
231
  device, batch_size, compute_type, whisper_model = whisper_config()
232
  logger.info("--------------- STARTING TRANSCRIPTION ------------------------")
233
+ logger.info(f"device: {device}, batch_size: {batch_size}, compute_type:{compute_type}, whisper_model: {whisper_model}")
234
  transcription = self.model.transcribe(audio_nparray, batch_size=batch_size,language=language)
235
  if info:
236
  print(transcription["segments"]) # before alignment