--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: exemple2-finetuned-segments results: [] --- # exemple2-finetuned-segments This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 5 | 3.5279 | 0.0125 | 0.0416 | 0.1024 | [0.003071310796148687, 0.1616174857459709, 0.0, 0.0, 0.0022739959938265523, 0.0, 0.0005909869482034998, 0.0017997990408432924, 0.0, 0.05474664289453949, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.09700429854115147, 0.0, 0.04184948021660935, 0.0006682389937106918, 0.0, 0.0, 0.00415553197202368, 0.004015113955619657, 0.0, 0.0, 6.202127329674078e-05, 0.05336540352809607, 0.0, 0.0, 0.0, 0.00025955435304111186, 0.0, 0.0] | [0.0032144853023359787, 0.18635872416872554, nan, 0.0, 0.0038356619632496504, nan, 0.0010970621048716994, 0.008956864181701621, nan, 0.06383171787997526, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.11043176613738219, nan, 0.051045006388159, 0.02862641327880683, nan, nan, 0.34138655462184875, 0.049846125151543415, 0.0, nan, 6.220517339692085e-05, 0.10777804260728432, 0.0, 0.0, 0.0, 0.0002737135463322385, 0.0, nan] | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2