rd211 commited on
Commit
aa235cf
·
verified ·
1 Parent(s): 90dc6e2

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 131072,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.2",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.2"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20c947d9f5edb92a3b0807650bbff6b22f9e7c027a68f094f350a64ddfce25d
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:218b7675ae599db65e8341097b2146c75bf2a33a7ceb1d22ff30723eb826b738
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3daf1e5a6d666d8c36007a7e250bbb032d79f2c5e7f7aae1bfdb27fa0ff810
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73434dc50f06b13f0d76c536d594673152d08c849e2333d5fedae6daef97b7e8
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,3034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.192,
6
+ "eval_steps": 500,
7
+ "global_step": 240,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "clip_ratio": 0.0,
14
+ "completion_length": 2761.8828125,
15
+ "epoch": 0.0008,
16
+ "grad_norm": 0.5506983381296895,
17
+ "kl": 0.0,
18
+ "learning_rate": 5e-07,
19
+ "loss": 0.0464,
20
+ "reward": 0.23066407296573743,
21
+ "reward_std": 0.45144409872591496,
22
+ "rewards/end_of_conversation_reward_func": 0.046093751094304025,
23
+ "rewards/end_rm_reward_func": 0.2392578125,
24
+ "rewards/length_reward_func": -0.0546875,
25
+ "rewards/thinking_reward_func": 0.0,
26
+ "step": 1
27
+ },
28
+ {
29
+ "clip_ratio": 0.004609759445884265,
30
+ "epoch": 0.0016,
31
+ "grad_norm": 0.5329509809633897,
32
+ "kl": 0.0012302398681640625,
33
+ "learning_rate": 5e-07,
34
+ "loss": 0.0463,
35
+ "step": 2
36
+ },
37
+ {
38
+ "clip_ratio": 0.0,
39
+ "completion_length": 3313.046875,
40
+ "epoch": 0.0024,
41
+ "grad_norm": 0.44037361030440025,
42
+ "kl": 0.0013537406921386719,
43
+ "learning_rate": 5e-07,
44
+ "loss": 0.0676,
45
+ "reward": 0.0886718796682544,
46
+ "reward_std": 0.45538751501590014,
47
+ "rewards/end_of_conversation_reward_func": 0.047656250768341124,
48
+ "rewards/end_rm_reward_func": 0.146484375,
49
+ "rewards/length_reward_func": -0.10546875,
50
+ "rewards/thinking_reward_func": 0.0,
51
+ "step": 3
52
+ },
53
+ {
54
+ "clip_ratio": 0.004155338363489136,
55
+ "epoch": 0.0032,
56
+ "grad_norm": 0.4238348103819464,
57
+ "kl": 0.00133514404296875,
58
+ "learning_rate": 5e-07,
59
+ "loss": 0.0677,
60
+ "step": 4
61
+ },
62
+ {
63
+ "clip_ratio": 0.0,
64
+ "completion_length": 3180.3046875,
65
+ "epoch": 0.004,
66
+ "grad_norm": 0.487685724080159,
67
+ "kl": 0.00140380859375,
68
+ "learning_rate": 5e-07,
69
+ "loss": 0.0617,
70
+ "reward": 0.12480469699949026,
71
+ "reward_std": 0.393667503958568,
72
+ "rewards/end_of_conversation_reward_func": 0.043750000768341124,
73
+ "rewards/end_rm_reward_func": 0.1279296875,
74
+ "rewards/length_reward_func": -0.046875,
75
+ "rewards/thinking_reward_func": 0.0,
76
+ "step": 5
77
+ },
78
+ {
79
+ "clip_ratio": 0.00448301769210957,
80
+ "epoch": 0.0048,
81
+ "grad_norm": 0.49115718476339393,
82
+ "kl": 0.001739501953125,
83
+ "learning_rate": 5e-07,
84
+ "loss": 0.0615,
85
+ "step": 6
86
+ },
87
+ {
88
+ "clip_ratio": 0.0,
89
+ "completion_length": 3680.03125,
90
+ "epoch": 0.0056,
91
+ "grad_norm": 0.36669507381078525,
92
+ "kl": 0.0017371177673339844,
93
+ "learning_rate": 5e-07,
94
+ "loss": 0.1115,
95
+ "reward": 0.12597656878642738,
96
+ "reward_std": 0.42063513631001115,
97
+ "rewards/end_of_conversation_reward_func": 0.035156251047737896,
98
+ "rewards/end_rm_reward_func": 0.1845703125,
99
+ "rewards/length_reward_func": -0.09375,
100
+ "rewards/thinking_reward_func": 0.0,
101
+ "step": 7
102
+ },
103
+ {
104
+ "clip_ratio": 0.004220222064759582,
105
+ "epoch": 0.0064,
106
+ "grad_norm": 0.36704470764422,
107
+ "kl": 0.001245260238647461,
108
+ "learning_rate": 5e-07,
109
+ "loss": 0.1116,
110
+ "step": 8
111
+ },
112
+ {
113
+ "clip_ratio": 0.0,
114
+ "completion_length": 3056.125,
115
+ "epoch": 0.0072,
116
+ "grad_norm": 0.3963636827663633,
117
+ "kl": 0.0019788742065429688,
118
+ "learning_rate": 5e-07,
119
+ "loss": 0.0823,
120
+ "reward": 0.259960952505935,
121
+ "reward_std": 0.4595574662089348,
122
+ "rewards/end_of_conversation_reward_func": 0.05000000080326572,
123
+ "rewards/end_rm_reward_func": 0.2685546875,
124
+ "rewards/length_reward_func": -0.05859375,
125
+ "rewards/thinking_reward_func": 0.0,
126
+ "step": 9
127
+ },
128
+ {
129
+ "clip_ratio": 0.004534602427156642,
130
+ "epoch": 0.008,
131
+ "grad_norm": 0.38789534112248125,
132
+ "kl": 0.001991748809814453,
133
+ "learning_rate": 5e-07,
134
+ "loss": 0.0822,
135
+ "step": 10
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 3453.7265625,
140
+ "epoch": 0.0088,
141
+ "grad_norm": 0.38064460431215713,
142
+ "kl": 0.002022266387939453,
143
+ "learning_rate": 5e-07,
144
+ "loss": 0.0951,
145
+ "reward": 0.15000000572763383,
146
+ "reward_std": 0.4482696056365967,
147
+ "rewards/end_of_conversation_reward_func": 0.044531251245643944,
148
+ "rewards/end_rm_reward_func": 0.19140625,
149
+ "rewards/length_reward_func": -0.0859375,
150
+ "rewards/thinking_reward_func": 0.0,
151
+ "step": 11
152
+ },
153
+ {
154
+ "clip_ratio": 0.004099749305169098,
155
+ "epoch": 0.0096,
156
+ "grad_norm": 0.3751699254242308,
157
+ "kl": 0.0019767284393310547,
158
+ "learning_rate": 5e-07,
159
+ "loss": 0.0951,
160
+ "step": 12
161
+ },
162
+ {
163
+ "clip_ratio": 0.0,
164
+ "completion_length": 3352.5234375,
165
+ "epoch": 0.0104,
166
+ "grad_norm": 0.3498351189608962,
167
+ "kl": 0.0030684471130371094,
168
+ "learning_rate": 5e-07,
169
+ "loss": 0.1119,
170
+ "reward": 0.13613282376900315,
171
+ "reward_std": 0.4642677316442132,
172
+ "rewards/end_of_conversation_reward_func": 0.041406251140870154,
173
+ "rewards/end_rm_reward_func": 0.1650390625,
174
+ "rewards/length_reward_func": -0.0703125,
175
+ "rewards/thinking_reward_func": 0.0,
176
+ "step": 13
177
+ },
178
+ {
179
+ "clip_ratio": 0.0042787125712493435,
180
+ "epoch": 0.0112,
181
+ "grad_norm": 0.34790390559755574,
182
+ "kl": 0.0029201507568359375,
183
+ "learning_rate": 5e-07,
184
+ "loss": 0.112,
185
+ "step": 14
186
+ },
187
+ {
188
+ "clip_ratio": 0.0,
189
+ "completion_length": 2548.421875,
190
+ "epoch": 0.012,
191
+ "grad_norm": 0.5282889686332808,
192
+ "kl": 0.003574371337890625,
193
+ "learning_rate": 5e-07,
194
+ "loss": 0.0372,
195
+ "reward": 0.3990234467200935,
196
+ "reward_std": 0.3981876859907061,
197
+ "rewards/end_of_conversation_reward_func": 0.0523437510128133,
198
+ "rewards/end_rm_reward_func": 0.3779296875,
199
+ "rewards/length_reward_func": -0.03125,
200
+ "rewards/thinking_reward_func": 0.0,
201
+ "step": 15
202
+ },
203
+ {
204
+ "clip_ratio": 0.0044180305558256805,
205
+ "epoch": 0.0128,
206
+ "grad_norm": 0.5245952101164439,
207
+ "kl": 0.004303455352783203,
208
+ "learning_rate": 5e-07,
209
+ "loss": 0.0371,
210
+ "step": 16
211
+ },
212
+ {
213
+ "clip_ratio": 0.0,
214
+ "completion_length": 3264.7578125,
215
+ "epoch": 0.0136,
216
+ "grad_norm": 0.4930092476738244,
217
+ "kl": 0.0028238296508789062,
218
+ "learning_rate": 5e-07,
219
+ "loss": 0.0877,
220
+ "reward": 0.058398447930812836,
221
+ "reward_std": 0.43455274496227503,
222
+ "rewards/end_of_conversation_reward_func": 0.043750000884756446,
223
+ "rewards/end_rm_reward_func": 0.1083984375,
224
+ "rewards/length_reward_func": -0.09375,
225
+ "rewards/thinking_reward_func": 0.0,
226
+ "step": 17
227
+ },
228
+ {
229
+ "clip_ratio": 0.0050234832015121356,
230
+ "epoch": 0.0144,
231
+ "grad_norm": 0.4879552129621058,
232
+ "kl": 0.0030431747436523438,
233
+ "learning_rate": 5e-07,
234
+ "loss": 0.0877,
235
+ "step": 18
236
+ },
237
+ {
238
+ "clip_ratio": 0.0,
239
+ "completion_length": 3004.109375,
240
+ "epoch": 0.0152,
241
+ "grad_norm": 0.44669678095839005,
242
+ "kl": 0.0027985572814941406,
243
+ "learning_rate": 5e-07,
244
+ "loss": 0.0234,
245
+ "reward": 0.30312501173466444,
246
+ "reward_std": 0.38858885364606977,
247
+ "rewards/end_of_conversation_reward_func": 0.04140625096624717,
248
+ "rewards/end_rm_reward_func": 0.30078125,
249
+ "rewards/length_reward_func": -0.0390625,
250
+ "rewards/thinking_reward_func": 0.0,
251
+ "step": 19
252
+ },
253
+ {
254
+ "clip_ratio": 0.003934504988137633,
255
+ "epoch": 0.016,
256
+ "grad_norm": 0.44274866510741123,
257
+ "kl": 0.0028510093688964844,
258
+ "learning_rate": 5e-07,
259
+ "loss": 0.0232,
260
+ "step": 20
261
+ },
262
+ {
263
+ "clip_ratio": 0.0,
264
+ "completion_length": 3229.953125,
265
+ "epoch": 0.0168,
266
+ "grad_norm": 0.48924113242313605,
267
+ "kl": 0.0034546852111816406,
268
+ "learning_rate": 5e-07,
269
+ "loss": 0.0991,
270
+ "reward": 0.26152344699949026,
271
+ "reward_std": 0.45786723494529724,
272
+ "rewards/end_of_conversation_reward_func": 0.05546875047730282,
273
+ "rewards/end_rm_reward_func": 0.2724609375,
274
+ "rewards/length_reward_func": -0.06640625,
275
+ "rewards/thinking_reward_func": 0.0,
276
+ "step": 21
277
+ },
278
+ {
279
+ "clip_ratio": 0.004537505708867684,
280
+ "epoch": 0.0176,
281
+ "grad_norm": 0.4709410237868635,
282
+ "kl": 0.0032873153686523438,
283
+ "learning_rate": 5e-07,
284
+ "loss": 0.0992,
285
+ "step": 22
286
+ },
287
+ {
288
+ "clip_ratio": 0.0,
289
+ "completion_length": 3771.703125,
290
+ "epoch": 0.0184,
291
+ "grad_norm": 0.4520127965646581,
292
+ "kl": 0.003025531768798828,
293
+ "learning_rate": 5e-07,
294
+ "loss": 0.0923,
295
+ "reward": 0.1816406373400241,
296
+ "reward_std": 0.3960149073973298,
297
+ "rewards/end_of_conversation_reward_func": 0.04296875064028427,
298
+ "rewards/end_rm_reward_func": 0.236328125,
299
+ "rewards/length_reward_func": -0.09765625,
300
+ "rewards/thinking_reward_func": 0.0,
301
+ "step": 23
302
+ },
303
+ {
304
+ "clip_ratio": 0.004418392883962952,
305
+ "epoch": 0.0192,
306
+ "grad_norm": 0.44165197354566593,
307
+ "kl": 0.003177642822265625,
308
+ "learning_rate": 5e-07,
309
+ "loss": 0.0922,
310
+ "step": 24
311
+ },
312
+ {
313
+ "clip_ratio": 0.0,
314
+ "completion_length": 2827.5234375,
315
+ "epoch": 0.02,
316
+ "grad_norm": 0.4898734505712748,
317
+ "kl": 0.003976345062255859,
318
+ "learning_rate": 5e-07,
319
+ "loss": 0.0859,
320
+ "reward": 0.29980469786096364,
321
+ "reward_std": 0.4965838538482785,
322
+ "rewards/end_of_conversation_reward_func": 0.05078125186264515,
323
+ "rewards/end_rm_reward_func": 0.2919921875,
324
+ "rewards/length_reward_func": -0.04296875,
325
+ "rewards/thinking_reward_func": 0.0,
326
+ "step": 25
327
+ },
328
+ {
329
+ "clip_ratio": 0.004215578097500838,
330
+ "epoch": 0.0208,
331
+ "grad_norm": 0.4604932294168012,
332
+ "kl": 0.0045299530029296875,
333
+ "learning_rate": 5e-07,
334
+ "loss": 0.0857,
335
+ "step": 26
336
+ },
337
+ {
338
+ "clip_ratio": 0.0,
339
+ "completion_length": 2700.25,
340
+ "epoch": 0.0216,
341
+ "grad_norm": 0.5569547586903592,
342
+ "kl": 0.006651878356933594,
343
+ "learning_rate": 5e-07,
344
+ "loss": 0.0628,
345
+ "reward": 0.21445313654839993,
346
+ "reward_std": 0.4763609850779176,
347
+ "rewards/end_of_conversation_reward_func": 0.048437501303851604,
348
+ "rewards/end_rm_reward_func": 0.224609375,
349
+ "rewards/length_reward_func": -0.05859375,
350
+ "rewards/thinking_reward_func": 0.0,
351
+ "step": 27
352
+ },
353
+ {
354
+ "clip_ratio": 0.00526866911968682,
355
+ "epoch": 0.0224,
356
+ "grad_norm": 0.5363885121679981,
357
+ "kl": 0.008578300476074219,
358
+ "learning_rate": 5e-07,
359
+ "loss": 0.0626,
360
+ "step": 28
361
+ },
362
+ {
363
+ "clip_ratio": 0.0,
364
+ "completion_length": 3302.2109375,
365
+ "epoch": 0.0232,
366
+ "grad_norm": 0.461624948266616,
367
+ "kl": 0.18498802185058594,
368
+ "learning_rate": 5e-07,
369
+ "loss": 0.1148,
370
+ "reward": 0.18046875682193786,
371
+ "reward_std": 0.3992706071585417,
372
+ "rewards/end_of_conversation_reward_func": 0.043750000826548785,
373
+ "rewards/end_rm_reward_func": 0.21875,
374
+ "rewards/length_reward_func": -0.08203125,
375
+ "rewards/thinking_reward_func": 0.0,
376
+ "step": 29
377
+ },
378
+ {
379
+ "clip_ratio": 0.004589079937431961,
380
+ "epoch": 0.024,
381
+ "grad_norm": 0.47299298250006305,
382
+ "kl": 0.14548110961914062,
383
+ "learning_rate": 5e-07,
384
+ "loss": 0.1149,
385
+ "step": 30
386
+ },
387
+ {
388
+ "clip_ratio": 0.0,
389
+ "completion_length": 3118.6015625,
390
+ "epoch": 0.0248,
391
+ "grad_norm": 0.42713160024118774,
392
+ "kl": 0.008479118347167969,
393
+ "learning_rate": 5e-07,
394
+ "loss": 0.1257,
395
+ "reward": 0.34414063580334187,
396
+ "reward_std": 0.5011807959526777,
397
+ "rewards/end_of_conversation_reward_func": 0.05312500102445483,
398
+ "rewards/end_rm_reward_func": 0.361328125,
399
+ "rewards/length_reward_func": -0.0703125,
400
+ "rewards/thinking_reward_func": 0.0,
401
+ "step": 31
402
+ },
403
+ {
404
+ "clip_ratio": 0.004479929368244484,
405
+ "epoch": 0.0256,
406
+ "grad_norm": 0.44373075948513674,
407
+ "kl": 0.010387420654296875,
408
+ "learning_rate": 5e-07,
409
+ "loss": 0.1258,
410
+ "step": 32
411
+ },
412
+ {
413
+ "clip_ratio": 0.0,
414
+ "completion_length": 3374.3125,
415
+ "epoch": 0.0264,
416
+ "grad_norm": 0.4853755980068411,
417
+ "kl": 0.010019302368164062,
418
+ "learning_rate": 5e-07,
419
+ "loss": 0.0936,
420
+ "reward": 0.18574219779111445,
421
+ "reward_std": 0.39575440785847604,
422
+ "rewards/end_of_conversation_reward_func": 0.05000000144354999,
423
+ "rewards/end_rm_reward_func": 0.2138671875,
424
+ "rewards/length_reward_func": -0.078125,
425
+ "rewards/thinking_reward_func": 0.0,
426
+ "step": 33
427
+ },
428
+ {
429
+ "clip_ratio": 0.0049804064619820565,
430
+ "epoch": 0.0272,
431
+ "grad_norm": 0.48990044698626367,
432
+ "kl": 0.010984420776367188,
433
+ "learning_rate": 5e-07,
434
+ "loss": 0.0935,
435
+ "step": 34
436
+ },
437
+ {
438
+ "clip_ratio": 0.0,
439
+ "completion_length": 3179.3671875,
440
+ "epoch": 0.028,
441
+ "grad_norm": 0.5301584639571147,
442
+ "kl": 0.016666412353515625,
443
+ "learning_rate": 5e-07,
444
+ "loss": 0.0573,
445
+ "reward": 0.20410157088190317,
446
+ "reward_std": 0.5211825617589056,
447
+ "rewards/end_of_conversation_reward_func": 0.04687500069849193,
448
+ "rewards/end_rm_reward_func": 0.2197265625,
449
+ "rewards/length_reward_func": -0.0625,
450
+ "rewards/thinking_reward_func": 0.0,
451
+ "step": 35
452
+ },
453
+ {
454
+ "clip_ratio": 0.004679829871747643,
455
+ "epoch": 0.0288,
456
+ "grad_norm": 0.5145033225785893,
457
+ "kl": 0.021465301513671875,
458
+ "learning_rate": 5e-07,
459
+ "loss": 0.0571,
460
+ "step": 36
461
+ },
462
+ {
463
+ "clip_ratio": 0.0,
464
+ "completion_length": 3041.6875,
465
+ "epoch": 0.0296,
466
+ "grad_norm": 0.4531386948890339,
467
+ "kl": 0.014142990112304688,
468
+ "learning_rate": 5e-07,
469
+ "loss": 0.061,
470
+ "reward": 0.17304688156582415,
471
+ "reward_std": 0.42873420752584934,
472
+ "rewards/end_of_conversation_reward_func": 0.04609375062864274,
473
+ "rewards/end_rm_reward_func": 0.181640625,
474
+ "rewards/length_reward_func": -0.0546875,
475
+ "rewards/thinking_reward_func": 0.0,
476
+ "step": 37
477
+ },
478
+ {
479
+ "clip_ratio": 0.004625552362995222,
480
+ "epoch": 0.0304,
481
+ "grad_norm": 0.4389212247837138,
482
+ "kl": 0.01320648193359375,
483
+ "learning_rate": 5e-07,
484
+ "loss": 0.0608,
485
+ "step": 38
486
+ },
487
+ {
488
+ "clip_ratio": 0.0,
489
+ "completion_length": 2900.984375,
490
+ "epoch": 0.0312,
491
+ "grad_norm": 0.513108187473543,
492
+ "kl": 0.0476226806640625,
493
+ "learning_rate": 5e-07,
494
+ "loss": 0.0364,
495
+ "reward": 0.26054688123986125,
496
+ "reward_std": 0.4113442550878972,
497
+ "rewards/end_of_conversation_reward_func": 0.0515625016996637,
498
+ "rewards/end_rm_reward_func": 0.244140625,
499
+ "rewards/length_reward_func": -0.03515625,
500
+ "rewards/thinking_reward_func": 0.0,
501
+ "step": 39
502
+ },
503
+ {
504
+ "clip_ratio": 0.005045634257839993,
505
+ "epoch": 0.032,
506
+ "grad_norm": 0.4960768449341314,
507
+ "kl": 0.023647308349609375,
508
+ "learning_rate": 5e-07,
509
+ "loss": 0.0363,
510
+ "step": 40
511
+ },
512
+ {
513
+ "clip_ratio": 0.0,
514
+ "completion_length": 3094.5390625,
515
+ "epoch": 0.0328,
516
+ "grad_norm": 0.4111608127743996,
517
+ "kl": 0.023374557495117188,
518
+ "learning_rate": 5e-07,
519
+ "loss": 0.1087,
520
+ "reward": 0.18554687942378223,
521
+ "reward_std": 0.48099791165441275,
522
+ "rewards/end_of_conversation_reward_func": 0.03906250058207661,
523
+ "rewards/end_rm_reward_func": 0.205078125,
524
+ "rewards/length_reward_func": -0.05859375,
525
+ "rewards/thinking_reward_func": 0.0,
526
+ "step": 41
527
+ },
528
+ {
529
+ "clip_ratio": 0.004160198179306462,
530
+ "epoch": 0.0336,
531
+ "grad_norm": 0.4050446568608628,
532
+ "kl": 0.020130157470703125,
533
+ "learning_rate": 5e-07,
534
+ "loss": 0.1086,
535
+ "step": 42
536
+ },
537
+ {
538
+ "clip_ratio": 0.0,
539
+ "completion_length": 2732.453125,
540
+ "epoch": 0.0344,
541
+ "grad_norm": 0.5932767606982138,
542
+ "kl": 0.07580184936523438,
543
+ "learning_rate": 5e-07,
544
+ "loss": 0.0115,
545
+ "reward": 0.10800781659781933,
546
+ "reward_std": 0.4096634048037231,
547
+ "rewards/end_of_conversation_reward_func": 0.052343750663567334,
548
+ "rewards/end_rm_reward_func": 0.1103515625,
549
+ "rewards/length_reward_func": -0.0546875,
550
+ "rewards/thinking_reward_func": 0.0,
551
+ "step": 43
552
+ },
553
+ {
554
+ "clip_ratio": 0.005395003347075544,
555
+ "epoch": 0.0352,
556
+ "grad_norm": 0.562119953077685,
557
+ "kl": 0.1378173828125,
558
+ "learning_rate": 5e-07,
559
+ "loss": 0.0112,
560
+ "step": 44
561
+ },
562
+ {
563
+ "clip_ratio": 0.0,
564
+ "completion_length": 3149.03125,
565
+ "epoch": 0.036,
566
+ "grad_norm": 0.43738882704141613,
567
+ "kl": 0.07685470581054688,
568
+ "learning_rate": 5e-07,
569
+ "loss": 0.0961,
570
+ "reward": 0.18593750661239028,
571
+ "reward_std": 0.459837670205161,
572
+ "rewards/end_of_conversation_reward_func": 0.04140625079162419,
573
+ "rewards/end_rm_reward_func": 0.2109375,
574
+ "rewards/length_reward_func": -0.06640625,
575
+ "rewards/thinking_reward_func": 0.0,
576
+ "step": 45
577
+ },
578
+ {
579
+ "clip_ratio": 0.004886353664915077,
580
+ "epoch": 0.0368,
581
+ "grad_norm": 0.4246516268286063,
582
+ "kl": 0.07813262939453125,
583
+ "learning_rate": 5e-07,
584
+ "loss": 0.0961,
585
+ "step": 46
586
+ },
587
+ {
588
+ "clip_ratio": 0.0,
589
+ "completion_length": 2791.0625,
590
+ "epoch": 0.0376,
591
+ "grad_norm": 0.4757940646494544,
592
+ "kl": 0.041767120361328125,
593
+ "learning_rate": 5e-07,
594
+ "loss": 0.0631,
595
+ "reward": 0.2837890684604645,
596
+ "reward_std": 0.4126680698245764,
597
+ "rewards/end_of_conversation_reward_func": 0.056250001303851604,
598
+ "rewards/end_rm_reward_func": 0.2626953125,
599
+ "rewards/length_reward_func": -0.03515625,
600
+ "rewards/thinking_reward_func": 0.0,
601
+ "step": 47
602
+ },
603
+ {
604
+ "clip_ratio": 0.005135874525876716,
605
+ "epoch": 0.0384,
606
+ "grad_norm": 0.47547921032378754,
607
+ "kl": 0.09936141967773438,
608
+ "learning_rate": 5e-07,
609
+ "loss": 0.063,
610
+ "step": 48
611
+ },
612
+ {
613
+ "clip_ratio": 0.0,
614
+ "completion_length": 2754.609375,
615
+ "epoch": 0.0392,
616
+ "grad_norm": 0.49754042199838183,
617
+ "kl": 0.12404251098632812,
618
+ "learning_rate": 5e-07,
619
+ "loss": 0.0849,
620
+ "reward": 0.32207031920552254,
621
+ "reward_std": 0.46512654330581427,
622
+ "rewards/end_of_conversation_reward_func": 0.051562500884756446,
623
+ "rewards/end_rm_reward_func": 0.3017578125,
624
+ "rewards/length_reward_func": -0.03125,
625
+ "rewards/thinking_reward_func": 0.0,
626
+ "step": 49
627
+ },
628
+ {
629
+ "clip_ratio": 0.004882045017438941,
630
+ "epoch": 0.04,
631
+ "grad_norm": 0.4817430120792817,
632
+ "kl": 0.11900711059570312,
633
+ "learning_rate": 5e-07,
634
+ "loss": 0.0847,
635
+ "step": 50
636
+ },
637
+ {
638
+ "clip_ratio": 0.0,
639
+ "completion_length": 2970.8984375,
640
+ "epoch": 0.0408,
641
+ "grad_norm": 0.5071054759904158,
642
+ "kl": 0.057147979736328125,
643
+ "learning_rate": 5e-07,
644
+ "loss": 0.1121,
645
+ "reward": 0.2646484528668225,
646
+ "reward_std": 0.37708853278309107,
647
+ "rewards/end_of_conversation_reward_func": 0.05468750081490725,
648
+ "rewards/end_rm_reward_func": 0.2607421875,
649
+ "rewards/length_reward_func": -0.05078125,
650
+ "rewards/thinking_reward_func": 0.0,
651
+ "step": 51
652
+ },
653
+ {
654
+ "clip_ratio": 0.004119776640436612,
655
+ "epoch": 0.0416,
656
+ "grad_norm": 0.4894389235389238,
657
+ "kl": 0.05866241455078125,
658
+ "learning_rate": 5e-07,
659
+ "loss": 0.112,
660
+ "step": 52
661
+ },
662
+ {
663
+ "clip_ratio": 0.0,
664
+ "completion_length": 2454.84375,
665
+ "epoch": 0.0424,
666
+ "grad_norm": 0.6397704779379643,
667
+ "kl": 0.10573577880859375,
668
+ "learning_rate": 5e-07,
669
+ "loss": 0.0424,
670
+ "reward": 0.29101564083248377,
671
+ "reward_std": 0.3862592806108296,
672
+ "rewards/end_of_conversation_reward_func": 0.058593750989530236,
673
+ "rewards/end_rm_reward_func": 0.271484375,
674
+ "rewards/length_reward_func": -0.0390625,
675
+ "rewards/thinking_reward_func": 0.0,
676
+ "step": 53
677
+ },
678
+ {
679
+ "clip_ratio": 0.005806522516650148,
680
+ "epoch": 0.0432,
681
+ "grad_norm": 0.5935861300569137,
682
+ "kl": 0.22344207763671875,
683
+ "learning_rate": 5e-07,
684
+ "loss": 0.0421,
685
+ "step": 54
686
+ },
687
+ {
688
+ "clip_ratio": 0.0,
689
+ "completion_length": 2823.3515625,
690
+ "epoch": 0.044,
691
+ "grad_norm": 0.5249791154692802,
692
+ "kl": 0.09177398681640625,
693
+ "learning_rate": 5e-07,
694
+ "loss": 0.0814,
695
+ "reward": 0.26269532449077815,
696
+ "reward_std": 0.40016138833016157,
697
+ "rewards/end_of_conversation_reward_func": 0.05078125122236088,
698
+ "rewards/end_rm_reward_func": 0.2626953125,
699
+ "rewards/length_reward_func": -0.05078125,
700
+ "rewards/thinking_reward_func": 0.0,
701
+ "step": 55
702
+ },
703
+ {
704
+ "clip_ratio": 0.00533542905759532,
705
+ "epoch": 0.0448,
706
+ "grad_norm": 0.49819488661627054,
707
+ "kl": 0.0757293701171875,
708
+ "learning_rate": 5e-07,
709
+ "loss": 0.0811,
710
+ "step": 56
711
+ },
712
+ {
713
+ "clip_ratio": 0.0,
714
+ "completion_length": 2891.5859375,
715
+ "epoch": 0.0456,
716
+ "grad_norm": 0.5318285198540439,
717
+ "kl": 0.3561859130859375,
718
+ "learning_rate": 5e-07,
719
+ "loss": 0.0162,
720
+ "reward": 0.3619140787050128,
721
+ "reward_std": 0.45814486034214497,
722
+ "rewards/end_of_conversation_reward_func": 0.056250000721774995,
723
+ "rewards/end_rm_reward_func": 0.3486328125,
724
+ "rewards/length_reward_func": -0.04296875,
725
+ "rewards/thinking_reward_func": 0.0,
726
+ "step": 57
727
+ },
728
+ {
729
+ "clip_ratio": 0.005233535193838179,
730
+ "epoch": 0.0464,
731
+ "grad_norm": 0.5029588635123279,
732
+ "kl": 0.7606353759765625,
733
+ "learning_rate": 5e-07,
734
+ "loss": 0.0161,
735
+ "step": 58
736
+ },
737
+ {
738
+ "clip_ratio": 0.0,
739
+ "completion_length": 3584.8203125,
740
+ "epoch": 0.0472,
741
+ "grad_norm": 0.4934060163626245,
742
+ "kl": 0.31105804443359375,
743
+ "learning_rate": 5e-07,
744
+ "loss": 0.0458,
745
+ "reward": 0.20800781692378223,
746
+ "reward_std": 0.45996399596333504,
747
+ "rewards/end_of_conversation_reward_func": 0.03906250069849193,
748
+ "rewards/end_rm_reward_func": 0.2314453125,
749
+ "rewards/length_reward_func": -0.0625,
750
+ "rewards/thinking_reward_func": 0.0,
751
+ "step": 59
752
+ },
753
+ {
754
+ "clip_ratio": 0.004666702181566507,
755
+ "epoch": 0.048,
756
+ "grad_norm": 0.45620632413031426,
757
+ "kl": 0.1880645751953125,
758
+ "learning_rate": 5e-07,
759
+ "loss": 0.0457,
760
+ "step": 60
761
+ },
762
+ {
763
+ "clip_ratio": 0.0,
764
+ "completion_length": 2510.5703125,
765
+ "epoch": 0.0488,
766
+ "grad_norm": 0.62998979474741,
767
+ "kl": 0.158233642578125,
768
+ "learning_rate": 5e-07,
769
+ "loss": 0.0642,
770
+ "reward": 0.2816406446509063,
771
+ "reward_std": 0.35436337254941463,
772
+ "rewards/end_of_conversation_reward_func": 0.06093750131549314,
773
+ "rewards/end_rm_reward_func": 0.251953125,
774
+ "rewards/length_reward_func": -0.03125,
775
+ "rewards/thinking_reward_func": 0.0,
776
+ "step": 61
777
+ },
778
+ {
779
+ "clip_ratio": 0.006271788995945826,
780
+ "epoch": 0.0496,
781
+ "grad_norm": 0.6009428790886027,
782
+ "kl": 0.271392822265625,
783
+ "learning_rate": 5e-07,
784
+ "loss": 0.0639,
785
+ "step": 62
786
+ },
787
+ {
788
+ "clip_ratio": 0.0,
789
+ "completion_length": 2657.3671875,
790
+ "epoch": 0.0504,
791
+ "grad_norm": 0.6144033583238725,
792
+ "kl": 0.100860595703125,
793
+ "learning_rate": 5e-07,
794
+ "loss": 0.1188,
795
+ "reward": 0.266796879703179,
796
+ "reward_std": 0.39745712792500854,
797
+ "rewards/end_of_conversation_reward_func": 0.04609375091968104,
798
+ "rewards/end_rm_reward_func": 0.255859375,
799
+ "rewards/length_reward_func": -0.03515625,
800
+ "rewards/thinking_reward_func": 0.0,
801
+ "step": 63
802
+ },
803
+ {
804
+ "clip_ratio": 0.005829609275679104,
805
+ "epoch": 0.0512,
806
+ "grad_norm": 0.5803952639816394,
807
+ "kl": 0.1117401123046875,
808
+ "learning_rate": 5e-07,
809
+ "loss": 0.1186,
810
+ "step": 64
811
+ },
812
+ {
813
+ "clip_ratio": 0.0,
814
+ "completion_length": 2555.703125,
815
+ "epoch": 0.052,
816
+ "grad_norm": 0.607729281892395,
817
+ "kl": 1.57684326171875,
818
+ "learning_rate": 5e-07,
819
+ "loss": 0.0828,
820
+ "reward": 0.28125000261934474,
821
+ "reward_std": 0.4093571212142706,
822
+ "rewards/end_of_conversation_reward_func": 0.054687500349245965,
823
+ "rewards/end_rm_reward_func": 0.26171875,
824
+ "rewards/length_reward_func": -0.03515625,
825
+ "rewards/thinking_reward_func": 0.0,
826
+ "step": 65
827
+ },
828
+ {
829
+ "clip_ratio": 0.005639895083731972,
830
+ "epoch": 0.0528,
831
+ "grad_norm": 0.5870178045196847,
832
+ "kl": 3.4336700439453125,
833
+ "learning_rate": 5e-07,
834
+ "loss": 0.0823,
835
+ "step": 66
836
+ },
837
+ {
838
+ "clip_ratio": 0.0,
839
+ "completion_length": 3058.078125,
840
+ "epoch": 0.0536,
841
+ "grad_norm": 0.6392048858380123,
842
+ "kl": 0.2032470703125,
843
+ "learning_rate": 5e-07,
844
+ "loss": 0.0872,
845
+ "reward": 0.2697265713941306,
846
+ "reward_std": 0.46659763529896736,
847
+ "rewards/end_of_conversation_reward_func": 0.05000000074505806,
848
+ "rewards/end_rm_reward_func": 0.2705078125,
849
+ "rewards/length_reward_func": -0.05078125,
850
+ "rewards/thinking_reward_func": 0.0,
851
+ "step": 67
852
+ },
853
+ {
854
+ "clip_ratio": 0.005416913933004253,
855
+ "epoch": 0.0544,
856
+ "grad_norm": 0.5540548636439222,
857
+ "kl": 0.2025146484375,
858
+ "learning_rate": 5e-07,
859
+ "loss": 0.0868,
860
+ "step": 68
861
+ },
862
+ {
863
+ "clip_ratio": 0.0,
864
+ "completion_length": 3101.0234375,
865
+ "epoch": 0.0552,
866
+ "grad_norm": 0.5462471595428263,
867
+ "kl": 0.8668975830078125,
868
+ "learning_rate": 5e-07,
869
+ "loss": 0.1123,
870
+ "reward": 0.13945313333533704,
871
+ "reward_std": 0.4813323845155537,
872
+ "rewards/end_of_conversation_reward_func": 0.0515625006519258,
873
+ "rewards/end_rm_reward_func": 0.134765625,
874
+ "rewards/length_reward_func": -0.046875,
875
+ "rewards/thinking_reward_func": 0.0,
876
+ "step": 69
877
+ },
878
+ {
879
+ "clip_ratio": 0.005168676114408299,
880
+ "epoch": 0.056,
881
+ "grad_norm": 0.528066600936896,
882
+ "kl": 0.857147216796875,
883
+ "learning_rate": 5e-07,
884
+ "loss": 0.1122,
885
+ "step": 70
886
+ },
887
+ {
888
+ "clip_ratio": 0.0,
889
+ "completion_length": 2047.375,
890
+ "epoch": 0.0568,
891
+ "grad_norm": 0.691284897693145,
892
+ "kl": 15.969619750976562,
893
+ "learning_rate": 5e-07,
894
+ "loss": 0.0289,
895
+ "reward": 0.487109393812716,
896
+ "reward_std": 0.4644232392311096,
897
+ "rewards/end_of_conversation_reward_func": 0.07500000158324838,
898
+ "rewards/end_rm_reward_func": 0.427734375,
899
+ "rewards/length_reward_func": -0.015625,
900
+ "rewards/thinking_reward_func": 0.0,
901
+ "step": 71
902
+ },
903
+ {
904
+ "clip_ratio": 0.005814553995151073,
905
+ "epoch": 0.0576,
906
+ "grad_norm": 0.6404202865162691,
907
+ "kl": 30.811477661132812,
908
+ "learning_rate": 5e-07,
909
+ "loss": 0.0288,
910
+ "step": 72
911
+ },
912
+ {
913
+ "clip_ratio": 0.0,
914
+ "completion_length": 2905.2890625,
915
+ "epoch": 0.0584,
916
+ "grad_norm": 0.6445835293449337,
917
+ "kl": 1.801666259765625,
918
+ "learning_rate": 5e-07,
919
+ "loss": 0.0275,
920
+ "reward": 0.15878907404839993,
921
+ "reward_std": 0.3413613960146904,
922
+ "rewards/end_of_conversation_reward_func": 0.05625000089639798,
923
+ "rewards/end_rm_reward_func": 0.1337890625,
924
+ "rewards/length_reward_func": -0.03125,
925
+ "rewards/thinking_reward_func": 0.0,
926
+ "step": 73
927
+ },
928
+ {
929
+ "clip_ratio": 0.004967361441231333,
930
+ "epoch": 0.0592,
931
+ "grad_norm": 0.5958211572085673,
932
+ "kl": 1.816192626953125,
933
+ "learning_rate": 5e-07,
934
+ "loss": 0.027,
935
+ "step": 74
936
+ },
937
+ {
938
+ "clip_ratio": 0.0,
939
+ "completion_length": 3157.5546875,
940
+ "epoch": 0.06,
941
+ "grad_norm": 0.5787729026187358,
942
+ "kl": 1.14288330078125,
943
+ "learning_rate": 5e-07,
944
+ "loss": 0.0495,
945
+ "reward": 0.2250000073108822,
946
+ "reward_std": 0.38128331024199724,
947
+ "rewards/end_of_conversation_reward_func": 0.045312500617001206,
948
+ "rewards/end_rm_reward_func": 0.234375,
949
+ "rewards/length_reward_func": -0.0546875,
950
+ "rewards/thinking_reward_func": 0.0,
951
+ "step": 75
952
+ },
953
+ {
954
+ "clip_ratio": 0.0048050573241198435,
955
+ "epoch": 0.0608,
956
+ "grad_norm": 0.5568993189176473,
957
+ "kl": 0.77630615234375,
958
+ "learning_rate": 5e-07,
959
+ "loss": 0.0494,
960
+ "step": 76
961
+ },
962
+ {
963
+ "clip_ratio": 0.0,
964
+ "completion_length": 2372.6640625,
965
+ "epoch": 0.0616,
966
+ "grad_norm": 0.6173163766112336,
967
+ "kl": 0.433197021484375,
968
+ "learning_rate": 5e-07,
969
+ "loss": 0.085,
970
+ "reward": 0.21562500204890966,
971
+ "reward_std": 0.35906139435246587,
972
+ "rewards/end_of_conversation_reward_func": 0.055468750826548785,
973
+ "rewards/end_rm_reward_func": 0.1796875,
974
+ "rewards/length_reward_func": -0.01953125,
975
+ "rewards/thinking_reward_func": 0.0,
976
+ "step": 77
977
+ },
978
+ {
979
+ "clip_ratio": 0.005464794070576318,
980
+ "epoch": 0.0624,
981
+ "grad_norm": 0.5907021152198737,
982
+ "kl": 1.02618408203125,
983
+ "learning_rate": 5e-07,
984
+ "loss": 0.0846,
985
+ "step": 78
986
+ },
987
+ {
988
+ "clip_ratio": 0.0,
989
+ "completion_length": 2704.46875,
990
+ "epoch": 0.0632,
991
+ "grad_norm": 0.7611829534310949,
992
+ "kl": 3.341705322265625,
993
+ "learning_rate": 5e-07,
994
+ "loss": 0.0493,
995
+ "reward": 0.23417970072478056,
996
+ "reward_std": 0.36300004506483674,
997
+ "rewards/end_of_conversation_reward_func": 0.06328125088475645,
998
+ "rewards/end_rm_reward_func": 0.2255859375,
999
+ "rewards/length_reward_func": -0.0546875,
1000
+ "rewards/thinking_reward_func": 0.0,
1001
+ "step": 79
1002
+ },
1003
+ {
1004
+ "clip_ratio": 0.005534523181268014,
1005
+ "epoch": 0.064,
1006
+ "grad_norm": 0.6276167653414357,
1007
+ "kl": 1.77569580078125,
1008
+ "learning_rate": 5e-07,
1009
+ "loss": 0.0488,
1010
+ "step": 80
1011
+ },
1012
+ {
1013
+ "clip_ratio": 0.0,
1014
+ "completion_length": 2530.2265625,
1015
+ "epoch": 0.0648,
1016
+ "grad_norm": 0.8681960156746225,
1017
+ "kl": 1.415252685546875,
1018
+ "learning_rate": 5e-07,
1019
+ "loss": 0.0355,
1020
+ "reward": 0.31796875852160156,
1021
+ "reward_std": 0.4489464135840535,
1022
+ "rewards/end_of_conversation_reward_func": 0.060156250721774995,
1023
+ "rewards/end_rm_reward_func": 0.28515625,
1024
+ "rewards/length_reward_func": -0.02734375,
1025
+ "rewards/thinking_reward_func": 0.0,
1026
+ "step": 81
1027
+ },
1028
+ {
1029
+ "clip_ratio": 0.006155758979730308,
1030
+ "epoch": 0.0656,
1031
+ "grad_norm": 0.619758928092397,
1032
+ "kl": 3.17950439453125,
1033
+ "learning_rate": 5e-07,
1034
+ "loss": 0.035,
1035
+ "step": 82
1036
+ },
1037
+ {
1038
+ "clip_ratio": 0.0,
1039
+ "completion_length": 2703.9140625,
1040
+ "epoch": 0.0664,
1041
+ "grad_norm": 0.6148471519549782,
1042
+ "kl": 3.2836151123046875,
1043
+ "learning_rate": 5e-07,
1044
+ "loss": 0.1116,
1045
+ "reward": 0.2703125097323209,
1046
+ "reward_std": 0.4398716832511127,
1047
+ "rewards/end_of_conversation_reward_func": 0.05937500071013346,
1048
+ "rewards/end_rm_reward_func": 0.24609375,
1049
+ "rewards/length_reward_func": -0.03515625,
1050
+ "rewards/thinking_reward_func": 0.0,
1051
+ "step": 83
1052
+ },
1053
+ {
1054
+ "clip_ratio": 0.005438056687125936,
1055
+ "epoch": 0.0672,
1056
+ "grad_norm": 0.6073114120206211,
1057
+ "kl": 2.31671142578125,
1058
+ "learning_rate": 5e-07,
1059
+ "loss": 0.1117,
1060
+ "step": 84
1061
+ },
1062
+ {
1063
+ "clip_ratio": 0.0,
1064
+ "completion_length": 2557.8515625,
1065
+ "epoch": 0.068,
1066
+ "grad_norm": 0.6280176622559991,
1067
+ "kl": 2.861480712890625,
1068
+ "learning_rate": 5e-07,
1069
+ "loss": 0.072,
1070
+ "reward": 0.22968750726431608,
1071
+ "reward_std": 0.3977765201125294,
1072
+ "rewards/end_of_conversation_reward_func": 0.05781250086147338,
1073
+ "rewards/end_rm_reward_func": 0.19921875,
1074
+ "rewards/length_reward_func": -0.02734375,
1075
+ "rewards/thinking_reward_func": 0.0,
1076
+ "step": 85
1077
+ },
1078
+ {
1079
+ "clip_ratio": 0.00582106395449955,
1080
+ "epoch": 0.0688,
1081
+ "grad_norm": 0.5717462929165856,
1082
+ "kl": 4.08203125,
1083
+ "learning_rate": 5e-07,
1084
+ "loss": 0.0716,
1085
+ "step": 86
1086
+ },
1087
+ {
1088
+ "clip_ratio": 0.0,
1089
+ "completion_length": 2243.3359375,
1090
+ "epoch": 0.0696,
1091
+ "grad_norm": 183.6986339811298,
1092
+ "kl": 88.17166137695312,
1093
+ "learning_rate": 5e-07,
1094
+ "loss": 0.1291,
1095
+ "reward": 0.3546875163447112,
1096
+ "reward_std": 0.4497223272919655,
1097
+ "rewards/end_of_conversation_reward_func": 0.06562500132713467,
1098
+ "rewards/end_rm_reward_func": 0.3203125,
1099
+ "rewards/length_reward_func": -0.03125,
1100
+ "rewards/thinking_reward_func": 0.0,
1101
+ "step": 87
1102
+ },
1103
+ {
1104
+ "clip_ratio": 0.00647925166413188,
1105
+ "epoch": 0.0704,
1106
+ "grad_norm": 20.29826374460904,
1107
+ "kl": 29.604248046875,
1108
+ "learning_rate": 5e-07,
1109
+ "loss": 0.0455,
1110
+ "step": 88
1111
+ },
1112
+ {
1113
+ "clip_ratio": 0.0,
1114
+ "completion_length": 2714.2265625,
1115
+ "epoch": 0.0712,
1116
+ "grad_norm": 0.5834283983979679,
1117
+ "kl": 4.820281982421875,
1118
+ "learning_rate": 5e-07,
1119
+ "loss": 0.0376,
1120
+ "reward": 0.3076171970460564,
1121
+ "reward_std": 0.40063817566260695,
1122
+ "rewards/end_of_conversation_reward_func": 0.06250000093132257,
1123
+ "rewards/end_rm_reward_func": 0.2802734375,
1124
+ "rewards/length_reward_func": -0.03515625,
1125
+ "rewards/thinking_reward_func": 0.0,
1126
+ "step": 89
1127
+ },
1128
+ {
1129
+ "clip_ratio": 0.005377560810302384,
1130
+ "epoch": 0.072,
1131
+ "grad_norm": 0.5713867955563853,
1132
+ "kl": 4.233428955078125,
1133
+ "learning_rate": 5e-07,
1134
+ "loss": 0.0374,
1135
+ "step": 90
1136
+ },
1137
+ {
1138
+ "clip_ratio": 0.0,
1139
+ "completion_length": 2687.90625,
1140
+ "epoch": 0.0728,
1141
+ "grad_norm": 0.6405648178568916,
1142
+ "kl": 11.98095703125,
1143
+ "learning_rate": 5e-07,
1144
+ "loss": 0.0957,
1145
+ "reward": 0.18671875854488462,
1146
+ "reward_std": 0.38381645642220974,
1147
+ "rewards/end_of_conversation_reward_func": 0.053906251094304025,
1148
+ "rewards/end_rm_reward_func": 0.1640625,
1149
+ "rewards/length_reward_func": -0.03125,
1150
+ "rewards/thinking_reward_func": 0.0,
1151
+ "step": 91
1152
+ },
1153
+ {
1154
+ "clip_ratio": 0.005748806172050536,
1155
+ "epoch": 0.0736,
1156
+ "grad_norm": 0.6406292246920093,
1157
+ "kl": 20.21795654296875,
1158
+ "learning_rate": 5e-07,
1159
+ "loss": 0.0954,
1160
+ "step": 92
1161
+ },
1162
+ {
1163
+ "clip_ratio": 0.0,
1164
+ "completion_length": 2914.953125,
1165
+ "epoch": 0.0744,
1166
+ "grad_norm": 0.5367785008596705,
1167
+ "kl": 4.4202880859375,
1168
+ "learning_rate": 5e-07,
1169
+ "loss": 0.0375,
1170
+ "reward": 0.22890625800937414,
1171
+ "reward_std": 0.4514218312688172,
1172
+ "rewards/end_of_conversation_reward_func": 0.053125001140870154,
1173
+ "rewards/end_rm_reward_func": 0.19921875,
1174
+ "rewards/length_reward_func": -0.0234375,
1175
+ "rewards/thinking_reward_func": 0.0,
1176
+ "step": 93
1177
+ },
1178
+ {
1179
+ "clip_ratio": 0.0050481803773436695,
1180
+ "epoch": 0.0752,
1181
+ "grad_norm": 0.5190161687082562,
1182
+ "kl": 4.3549346923828125,
1183
+ "learning_rate": 5e-07,
1184
+ "loss": 0.0372,
1185
+ "step": 94
1186
+ },
1187
+ {
1188
+ "clip_ratio": 0.0,
1189
+ "completion_length": 3141.1796875,
1190
+ "epoch": 0.076,
1191
+ "grad_norm": 0.6792418921682883,
1192
+ "kl": 51.4798583984375,
1193
+ "learning_rate": 5e-07,
1194
+ "loss": 0.1449,
1195
+ "reward": 0.2333984500146471,
1196
+ "reward_std": 0.4384781029075384,
1197
+ "rewards/end_of_conversation_reward_func": 0.054687501047737896,
1198
+ "rewards/end_rm_reward_func": 0.2607421875,
1199
+ "rewards/length_reward_func": -0.08203125,
1200
+ "rewards/thinking_reward_func": 0.0,
1201
+ "step": 95
1202
+ },
1203
+ {
1204
+ "clip_ratio": 0.004932425799779594,
1205
+ "epoch": 0.0768,
1206
+ "grad_norm": 0.5823614093199818,
1207
+ "kl": 39.2484130859375,
1208
+ "learning_rate": 5e-07,
1209
+ "loss": 0.1446,
1210
+ "step": 96
1211
+ },
1212
+ {
1213
+ "clip_ratio": 0.0,
1214
+ "completion_length": 2914.5,
1215
+ "epoch": 0.0776,
1216
+ "grad_norm": 0.5836376252053956,
1217
+ "kl": 3.556396484375,
1218
+ "learning_rate": 5e-07,
1219
+ "loss": 0.113,
1220
+ "reward": 0.12675781635334715,
1221
+ "reward_std": 0.3375853835605085,
1222
+ "rewards/end_of_conversation_reward_func": 0.05546875100117177,
1223
+ "rewards/end_rm_reward_func": 0.1181640625,
1224
+ "rewards/length_reward_func": -0.046875,
1225
+ "rewards/thinking_reward_func": 0.0,
1226
+ "step": 97
1227
+ },
1228
+ {
1229
+ "clip_ratio": 0.005294336486258544,
1230
+ "epoch": 0.0784,
1231
+ "grad_norm": 0.600979136556631,
1232
+ "kl": 2.90380859375,
1233
+ "learning_rate": 5e-07,
1234
+ "loss": 0.1127,
1235
+ "step": 98
1236
+ },
1237
+ {
1238
+ "clip_ratio": 0.0,
1239
+ "completion_length": 2303.875,
1240
+ "epoch": 0.0792,
1241
+ "grad_norm": 1.206634850995924,
1242
+ "kl": 2.009918212890625,
1243
+ "learning_rate": 5e-07,
1244
+ "loss": 0.0546,
1245
+ "reward": 0.30605470086447895,
1246
+ "reward_std": 0.41795148770324886,
1247
+ "rewards/end_of_conversation_reward_func": 0.06875000114087015,
1248
+ "rewards/end_rm_reward_func": 0.2724609375,
1249
+ "rewards/length_reward_func": -0.03515625,
1250
+ "rewards/thinking_reward_func": 0.0,
1251
+ "step": 99
1252
+ },
1253
+ {
1254
+ "clip_ratio": 0.006350497540552169,
1255
+ "epoch": 0.08,
1256
+ "grad_norm": 0.8269327675220272,
1257
+ "kl": 1.482818603515625,
1258
+ "learning_rate": 5e-07,
1259
+ "loss": 0.054,
1260
+ "step": 100
1261
+ },
1262
+ {
1263
+ "clip_ratio": 0.0,
1264
+ "completion_length": 1956.078125,
1265
+ "epoch": 0.0808,
1266
+ "grad_norm": 0.9861989653570116,
1267
+ "kl": 2.6380615234375,
1268
+ "learning_rate": 5e-07,
1269
+ "loss": 0.0302,
1270
+ "reward": 0.35351563640870154,
1271
+ "reward_std": 0.46613426599651575,
1272
+ "rewards/end_of_conversation_reward_func": 0.058593750931322575,
1273
+ "rewards/end_rm_reward_func": 0.310546875,
1274
+ "rewards/length_reward_func": -0.015625,
1275
+ "rewards/thinking_reward_func": 0.0,
1276
+ "step": 101
1277
+ },
1278
+ {
1279
+ "clip_ratio": 0.007070519757689908,
1280
+ "epoch": 0.0816,
1281
+ "grad_norm": 0.7756715106427584,
1282
+ "kl": 1.98809814453125,
1283
+ "learning_rate": 5e-07,
1284
+ "loss": 0.0295,
1285
+ "step": 102
1286
+ },
1287
+ {
1288
+ "clip_ratio": 0.0,
1289
+ "completion_length": 2405.5546875,
1290
+ "epoch": 0.0824,
1291
+ "grad_norm": 0.8282537056915061,
1292
+ "kl": 22.3995361328125,
1293
+ "learning_rate": 5e-07,
1294
+ "loss": 0.0809,
1295
+ "reward": 0.2816406422643922,
1296
+ "reward_std": 0.4782843650318682,
1297
+ "rewards/end_of_conversation_reward_func": 0.06093750102445483,
1298
+ "rewards/end_rm_reward_func": 0.251953125,
1299
+ "rewards/length_reward_func": -0.03125,
1300
+ "rewards/thinking_reward_func": 0.0,
1301
+ "step": 103
1302
+ },
1303
+ {
1304
+ "clip_ratio": 0.006699568155454472,
1305
+ "epoch": 0.0832,
1306
+ "grad_norm": 0.7403840647308474,
1307
+ "kl": 18.2386474609375,
1308
+ "learning_rate": 5e-07,
1309
+ "loss": 0.0804,
1310
+ "step": 104
1311
+ },
1312
+ {
1313
+ "clip_ratio": 0.0,
1314
+ "completion_length": 2866.75,
1315
+ "epoch": 0.084,
1316
+ "grad_norm": 0.6852221586130566,
1317
+ "kl": 157.30657958984375,
1318
+ "learning_rate": 5e-07,
1319
+ "loss": 0.1108,
1320
+ "reward": 0.13496094022411853,
1321
+ "reward_std": 0.354372289031744,
1322
+ "rewards/end_of_conversation_reward_func": 0.06171875010477379,
1323
+ "rewards/end_rm_reward_func": 0.1123046875,
1324
+ "rewards/length_reward_func": -0.0390625,
1325
+ "rewards/thinking_reward_func": 0.0,
1326
+ "step": 105
1327
+ },
1328
+ {
1329
+ "clip_ratio": 0.004895409845630638,
1330
+ "epoch": 0.0848,
1331
+ "grad_norm": 0.6017523870744153,
1332
+ "kl": 252.56585693359375,
1333
+ "learning_rate": 5e-07,
1334
+ "loss": 0.1103,
1335
+ "step": 106
1336
+ },
1337
+ {
1338
+ "clip_ratio": 0.0,
1339
+ "completion_length": 2348.046875,
1340
+ "epoch": 0.0856,
1341
+ "grad_norm": 0.914456395912047,
1342
+ "kl": 21.73077392578125,
1343
+ "learning_rate": 5e-07,
1344
+ "loss": 0.0961,
1345
+ "reward": 0.3595703274477273,
1346
+ "reward_std": 0.4024982349947095,
1347
+ "rewards/end_of_conversation_reward_func": 0.06562500080326572,
1348
+ "rewards/end_rm_reward_func": 0.3095703125,
1349
+ "rewards/length_reward_func": -0.015625,
1350
+ "rewards/thinking_reward_func": 0.0,
1351
+ "step": 107
1352
+ },
1353
+ {
1354
+ "clip_ratio": 0.0052587240061257035,
1355
+ "epoch": 0.0864,
1356
+ "grad_norm": 0.7438499135211943,
1357
+ "kl": 30.40380859375,
1358
+ "learning_rate": 5e-07,
1359
+ "loss": 0.0951,
1360
+ "step": 108
1361
+ },
1362
+ {
1363
+ "clip_ratio": 0.0,
1364
+ "completion_length": 2089.40625,
1365
+ "epoch": 0.0872,
1366
+ "grad_norm": 0.7458266319039674,
1367
+ "kl": 90.74044799804688,
1368
+ "learning_rate": 5e-07,
1369
+ "loss": 0.0166,
1370
+ "reward": 0.43183596106246114,
1371
+ "reward_std": 0.32141723250970244,
1372
+ "rewards/end_of_conversation_reward_func": 0.06953125190921128,
1373
+ "rewards/end_rm_reward_func": 0.3818359375,
1374
+ "rewards/length_reward_func": -0.01953125,
1375
+ "rewards/thinking_reward_func": 0.0,
1376
+ "step": 109
1377
+ },
1378
+ {
1379
+ "clip_ratio": 0.00607385064358823,
1380
+ "epoch": 0.088,
1381
+ "grad_norm": 0.6925768537695978,
1382
+ "kl": 94.23519897460938,
1383
+ "learning_rate": 5e-07,
1384
+ "loss": 0.0162,
1385
+ "step": 110
1386
+ },
1387
+ {
1388
+ "clip_ratio": 0.0,
1389
+ "completion_length": 2093.875,
1390
+ "epoch": 0.0888,
1391
+ "grad_norm": 0.6947966762196172,
1392
+ "kl": 107.85791015625,
1393
+ "learning_rate": 5e-07,
1394
+ "loss": 0.053,
1395
+ "reward": 0.36738282535225153,
1396
+ "reward_std": 0.41466561891138554,
1397
+ "rewards/end_of_conversation_reward_func": 0.05781250121071935,
1398
+ "rewards/end_rm_reward_func": 0.3212890625,
1399
+ "rewards/length_reward_func": -0.01171875,
1400
+ "rewards/thinking_reward_func": 0.0,
1401
+ "step": 111
1402
+ },
1403
+ {
1404
+ "clip_ratio": 0.006751221866579726,
1405
+ "epoch": 0.0896,
1406
+ "grad_norm": 0.6430098763794685,
1407
+ "kl": 92.2412109375,
1408
+ "learning_rate": 5e-07,
1409
+ "loss": 0.0524,
1410
+ "step": 112
1411
+ },
1412
+ {
1413
+ "clip_ratio": 0.0,
1414
+ "completion_length": 2857.453125,
1415
+ "epoch": 0.0904,
1416
+ "grad_norm": 5.39283424098446,
1417
+ "kl": 3.7830810546875,
1418
+ "learning_rate": 5e-07,
1419
+ "loss": 0.0634,
1420
+ "reward": 0.2548828301951289,
1421
+ "reward_std": 0.3852043147198856,
1422
+ "rewards/end_of_conversation_reward_func": 0.06640625046566129,
1423
+ "rewards/end_rm_reward_func": 0.2431640625,
1424
+ "rewards/length_reward_func": -0.0546875,
1425
+ "rewards/thinking_reward_func": 0.0,
1426
+ "step": 113
1427
+ },
1428
+ {
1429
+ "clip_ratio": 0.005811518072732724,
1430
+ "epoch": 0.0912,
1431
+ "grad_norm": 2.422126311857217,
1432
+ "kl": 3.3790283203125,
1433
+ "learning_rate": 5e-07,
1434
+ "loss": 0.0607,
1435
+ "step": 114
1436
+ },
1437
+ {
1438
+ "clip_ratio": 0.0,
1439
+ "completion_length": 2221.609375,
1440
+ "epoch": 0.092,
1441
+ "grad_norm": 1.6598304873547154,
1442
+ "kl": 20.3868408203125,
1443
+ "learning_rate": 5e-07,
1444
+ "loss": 0.084,
1445
+ "reward": 0.39785158331505954,
1446
+ "reward_std": 0.4529835293069482,
1447
+ "rewards/end_of_conversation_reward_func": 0.07265625102445483,
1448
+ "rewards/end_rm_reward_func": 0.3330078125,
1449
+ "rewards/length_reward_func": -0.0078125,
1450
+ "rewards/thinking_reward_func": 0.0,
1451
+ "step": 115
1452
+ },
1453
+ {
1454
+ "clip_ratio": 0.00665678849327378,
1455
+ "epoch": 0.0928,
1456
+ "grad_norm": 1.0235295266605744,
1457
+ "kl": 17.92303466796875,
1458
+ "learning_rate": 5e-07,
1459
+ "loss": 0.083,
1460
+ "step": 116
1461
+ },
1462
+ {
1463
+ "clip_ratio": 0.0,
1464
+ "completion_length": 2825.5546875,
1465
+ "epoch": 0.0936,
1466
+ "grad_norm": 0.6848549595945271,
1467
+ "kl": 1.4246826171875,
1468
+ "learning_rate": 5e-07,
1469
+ "loss": 0.0459,
1470
+ "reward": 0.3335937559604645,
1471
+ "reward_std": 0.3852117173373699,
1472
+ "rewards/end_of_conversation_reward_func": 0.064062500721775,
1473
+ "rewards/end_rm_reward_func": 0.3046875,
1474
+ "rewards/length_reward_func": -0.03515625,
1475
+ "rewards/thinking_reward_func": 0.0,
1476
+ "step": 117
1477
+ },
1478
+ {
1479
+ "clip_ratio": 0.006251567567232996,
1480
+ "epoch": 0.0944,
1481
+ "grad_norm": 0.6767843027822119,
1482
+ "kl": 1.2928466796875,
1483
+ "learning_rate": 5e-07,
1484
+ "loss": 0.0453,
1485
+ "step": 118
1486
+ },
1487
+ {
1488
+ "clip_ratio": 0.0,
1489
+ "completion_length": 2318.1640625,
1490
+ "epoch": 0.0952,
1491
+ "grad_norm": 10.653439671553652,
1492
+ "kl": 23.6943359375,
1493
+ "learning_rate": 5e-07,
1494
+ "loss": 0.0204,
1495
+ "reward": 0.3726562592200935,
1496
+ "reward_std": 0.4175419304519892,
1497
+ "rewards/end_of_conversation_reward_func": 0.06406250066356733,
1498
+ "rewards/end_rm_reward_func": 0.33203125,
1499
+ "rewards/length_reward_func": -0.0234375,
1500
+ "rewards/thinking_reward_func": 0.0,
1501
+ "step": 119
1502
+ },
1503
+ {
1504
+ "clip_ratio": 0.005671160441124812,
1505
+ "epoch": 0.096,
1506
+ "grad_norm": 2.3552929076073736,
1507
+ "kl": 25.97442626953125,
1508
+ "learning_rate": 5e-07,
1509
+ "loss": 0.0138,
1510
+ "step": 120
1511
+ },
1512
+ {
1513
+ "clip_ratio": 0.0,
1514
+ "completion_length": 1880.5078125,
1515
+ "epoch": 0.0968,
1516
+ "grad_norm": 0.7833349498274812,
1517
+ "kl": 6.0826416015625,
1518
+ "learning_rate": 5e-07,
1519
+ "loss": 0.0555,
1520
+ "reward": 0.4580078381113708,
1521
+ "reward_std": 0.47520614485256374,
1522
+ "rewards/end_of_conversation_reward_func": 0.07031250139698386,
1523
+ "rewards/end_rm_reward_func": 0.4111328125,
1524
+ "rewards/length_reward_func": -0.0234375,
1525
+ "rewards/thinking_reward_func": 0.0,
1526
+ "step": 121
1527
+ },
1528
+ {
1529
+ "clip_ratio": 0.005595599315711297,
1530
+ "epoch": 0.0976,
1531
+ "grad_norm": 0.7882700293427872,
1532
+ "kl": 8.645355224609375,
1533
+ "learning_rate": 5e-07,
1534
+ "loss": 0.0553,
1535
+ "step": 122
1536
+ },
1537
+ {
1538
+ "clip_ratio": 0.0,
1539
+ "completion_length": 2476.6640625,
1540
+ "epoch": 0.0984,
1541
+ "grad_norm": 0.912901642164902,
1542
+ "kl": 1.38836669921875,
1543
+ "learning_rate": 5e-07,
1544
+ "loss": 0.0478,
1545
+ "reward": 0.3851562616182491,
1546
+ "reward_std": 0.4384188293479383,
1547
+ "rewards/end_of_conversation_reward_func": 0.06093750067520887,
1548
+ "rewards/end_rm_reward_func": 0.328125,
1549
+ "rewards/length_reward_func": -0.00390625,
1550
+ "rewards/thinking_reward_func": 0.0,
1551
+ "step": 123
1552
+ },
1553
+ {
1554
+ "clip_ratio": 0.005667043791618198,
1555
+ "epoch": 0.0992,
1556
+ "grad_norm": 0.6713987475135793,
1557
+ "kl": 1.342529296875,
1558
+ "learning_rate": 5e-07,
1559
+ "loss": 0.047,
1560
+ "step": 124
1561
+ },
1562
+ {
1563
+ "clip_ratio": 0.0,
1564
+ "completion_length": 1897.9921875,
1565
+ "epoch": 0.1,
1566
+ "grad_norm": 1.8396052910399312,
1567
+ "kl": 52.3482666015625,
1568
+ "learning_rate": 5e-07,
1569
+ "loss": 0.0427,
1570
+ "reward": 0.36113282782025635,
1571
+ "reward_std": 0.4283226621337235,
1572
+ "rewards/end_of_conversation_reward_func": 0.06328125204890966,
1573
+ "rewards/end_rm_reward_func": 0.2978515625,
1574
+ "rewards/length_reward_func": 0.0,
1575
+ "rewards/thinking_reward_func": 0.0,
1576
+ "step": 125
1577
+ },
1578
+ {
1579
+ "clip_ratio": 0.008028718992136419,
1580
+ "epoch": 0.1008,
1581
+ "grad_norm": 0.9744864161133155,
1582
+ "kl": 69.21954345703125,
1583
+ "learning_rate": 5e-07,
1584
+ "loss": 0.0419,
1585
+ "step": 126
1586
+ },
1587
+ {
1588
+ "clip_ratio": 0.0,
1589
+ "completion_length": 2345.0234375,
1590
+ "epoch": 0.1016,
1591
+ "grad_norm": 0.9724894359575696,
1592
+ "kl": 32.419189453125,
1593
+ "learning_rate": 5e-07,
1594
+ "loss": -0.0304,
1595
+ "reward": 0.3443359527736902,
1596
+ "reward_std": 0.4752398133277893,
1597
+ "rewards/end_of_conversation_reward_func": 0.06796875188592821,
1598
+ "rewards/end_rm_reward_func": 0.2841796875,
1599
+ "rewards/length_reward_func": -0.0078125,
1600
+ "rewards/thinking_reward_func": 0.0,
1601
+ "step": 127
1602
+ },
1603
+ {
1604
+ "clip_ratio": 0.006735242568538524,
1605
+ "epoch": 0.1024,
1606
+ "grad_norm": 0.7654776812407493,
1607
+ "kl": 16.9310302734375,
1608
+ "learning_rate": 5e-07,
1609
+ "loss": -0.031,
1610
+ "step": 128
1611
+ },
1612
+ {
1613
+ "clip_ratio": 0.0,
1614
+ "completion_length": 2669.90625,
1615
+ "epoch": 0.1032,
1616
+ "grad_norm": 6.438509726974655,
1617
+ "kl": 2.64239501953125,
1618
+ "learning_rate": 5e-07,
1619
+ "loss": 0.0327,
1620
+ "reward": 0.21308594616129994,
1621
+ "reward_std": 0.44294028589501977,
1622
+ "rewards/end_of_conversation_reward_func": 0.0578125006868504,
1623
+ "rewards/end_rm_reward_func": 0.1787109375,
1624
+ "rewards/length_reward_func": -0.0234375,
1625
+ "rewards/thinking_reward_func": 0.0,
1626
+ "step": 129
1627
+ },
1628
+ {
1629
+ "clip_ratio": 0.005368985250242986,
1630
+ "epoch": 0.104,
1631
+ "grad_norm": 0.8747379437194369,
1632
+ "kl": 1.28466796875,
1633
+ "learning_rate": 5e-07,
1634
+ "loss": 0.0294,
1635
+ "step": 130
1636
+ },
1637
+ {
1638
+ "clip_ratio": 0.0,
1639
+ "completion_length": 2500.625,
1640
+ "epoch": 0.1048,
1641
+ "grad_norm": 0.6477351309697729,
1642
+ "kl": 2.7420654296875,
1643
+ "learning_rate": 5e-07,
1644
+ "loss": -0.0209,
1645
+ "reward": 0.31210938445292413,
1646
+ "reward_std": 0.37651610001921654,
1647
+ "rewards/end_of_conversation_reward_func": 0.060156251420266926,
1648
+ "rewards/end_rm_reward_func": 0.279296875,
1649
+ "rewards/length_reward_func": -0.02734375,
1650
+ "rewards/thinking_reward_func": 0.0,
1651
+ "step": 131
1652
+ },
1653
+ {
1654
+ "clip_ratio": 0.005497576406924054,
1655
+ "epoch": 0.1056,
1656
+ "grad_norm": 0.6479794324694829,
1657
+ "kl": 1.95208740234375,
1658
+ "learning_rate": 5e-07,
1659
+ "loss": -0.0211,
1660
+ "step": 132
1661
+ },
1662
+ {
1663
+ "clip_ratio": 0.0,
1664
+ "completion_length": 2211.4453125,
1665
+ "epoch": 0.1064,
1666
+ "grad_norm": 1.0082144435462406,
1667
+ "kl": 1.69384765625,
1668
+ "learning_rate": 5e-07,
1669
+ "loss": 0.0535,
1670
+ "reward": 0.3933593933470547,
1671
+ "reward_std": 0.4518305202946067,
1672
+ "rewards/end_of_conversation_reward_func": 0.06328125129221007,
1673
+ "rewards/end_rm_reward_func": 0.361328125,
1674
+ "rewards/length_reward_func": -0.03125,
1675
+ "rewards/thinking_reward_func": 0.0,
1676
+ "step": 133
1677
+ },
1678
+ {
1679
+ "clip_ratio": 0.0054282144556054845,
1680
+ "epoch": 0.1072,
1681
+ "grad_norm": 0.7238908888250458,
1682
+ "kl": 1.4329833984375,
1683
+ "learning_rate": 5e-07,
1684
+ "loss": 0.0526,
1685
+ "step": 134
1686
+ },
1687
+ {
1688
+ "clip_ratio": 0.0,
1689
+ "completion_length": 2542.8046875,
1690
+ "epoch": 0.108,
1691
+ "grad_norm": 0.639586024156753,
1692
+ "kl": 125.3736572265625,
1693
+ "learning_rate": 5e-07,
1694
+ "loss": 0.0567,
1695
+ "reward": 0.27167970268055797,
1696
+ "reward_std": 0.4119821102358401,
1697
+ "rewards/end_of_conversation_reward_func": 0.06562500086147338,
1698
+ "rewards/end_rm_reward_func": 0.2255859375,
1699
+ "rewards/length_reward_func": -0.01953125,
1700
+ "rewards/thinking_reward_func": 0.0,
1701
+ "step": 135
1702
+ },
1703
+ {
1704
+ "clip_ratio": 0.005144305920111947,
1705
+ "epoch": 0.1088,
1706
+ "grad_norm": 0.6324039246445893,
1707
+ "kl": 171.12823486328125,
1708
+ "learning_rate": 5e-07,
1709
+ "loss": 0.0565,
1710
+ "step": 136
1711
+ },
1712
+ {
1713
+ "clip_ratio": 0.0,
1714
+ "completion_length": 2629.3046875,
1715
+ "epoch": 0.1096,
1716
+ "grad_norm": 0.6701878690042156,
1717
+ "kl": 3.42401123046875,
1718
+ "learning_rate": 5e-07,
1719
+ "loss": 0.0713,
1720
+ "reward": 0.30917970347218215,
1721
+ "reward_std": 0.48418763000518084,
1722
+ "rewards/end_of_conversation_reward_func": 0.06015625176951289,
1723
+ "rewards/end_rm_reward_func": 0.2685546875,
1724
+ "rewards/length_reward_func": -0.01953125,
1725
+ "rewards/thinking_reward_func": 0.0,
1726
+ "step": 137
1727
+ },
1728
+ {
1729
+ "clip_ratio": 0.004802481475053355,
1730
+ "epoch": 0.1104,
1731
+ "grad_norm": 0.6296621696156859,
1732
+ "kl": 4.0013427734375,
1733
+ "learning_rate": 5e-07,
1734
+ "loss": 0.0709,
1735
+ "step": 138
1736
+ },
1737
+ {
1738
+ "clip_ratio": 0.0,
1739
+ "completion_length": 2347.1875,
1740
+ "epoch": 0.1112,
1741
+ "grad_norm": 0.6949091471055229,
1742
+ "kl": 29.50958251953125,
1743
+ "learning_rate": 5e-07,
1744
+ "loss": 0.0567,
1745
+ "reward": 0.23105469765141606,
1746
+ "reward_std": 0.35395989241078496,
1747
+ "rewards/end_of_conversation_reward_func": 0.056250001885928214,
1748
+ "rewards/end_rm_reward_func": 0.1904296875,
1749
+ "rewards/length_reward_func": -0.015625,
1750
+ "rewards/thinking_reward_func": 0.0,
1751
+ "step": 139
1752
+ },
1753
+ {
1754
+ "clip_ratio": 0.005910978390602395,
1755
+ "epoch": 0.112,
1756
+ "grad_norm": 0.649618448371434,
1757
+ "kl": 13.6500244140625,
1758
+ "learning_rate": 5e-07,
1759
+ "loss": 0.0561,
1760
+ "step": 140
1761
+ },
1762
+ {
1763
+ "clip_ratio": 0.0,
1764
+ "completion_length": 2259.3046875,
1765
+ "epoch": 0.1128,
1766
+ "grad_norm": 0.7642501957021136,
1767
+ "kl": 1.39849853515625,
1768
+ "learning_rate": 5e-07,
1769
+ "loss": 0.0365,
1770
+ "reward": 0.44687501853331923,
1771
+ "reward_std": 0.44018132728524506,
1772
+ "rewards/end_of_conversation_reward_func": 0.06796875060535967,
1773
+ "rewards/end_rm_reward_func": 0.390625,
1774
+ "rewards/length_reward_func": -0.01171875,
1775
+ "rewards/thinking_reward_func": 0.0,
1776
+ "step": 141
1777
+ },
1778
+ {
1779
+ "clip_ratio": 0.006374053191393614,
1780
+ "epoch": 0.1136,
1781
+ "grad_norm": 0.6891960123007369,
1782
+ "kl": 1.7943115234375,
1783
+ "learning_rate": 5e-07,
1784
+ "loss": 0.0359,
1785
+ "step": 142
1786
+ },
1787
+ {
1788
+ "clip_ratio": 0.0,
1789
+ "completion_length": 2309.171875,
1790
+ "epoch": 0.1144,
1791
+ "grad_norm": 0.8952677516080388,
1792
+ "kl": 1.2454833984375,
1793
+ "learning_rate": 5e-07,
1794
+ "loss": 0.0781,
1795
+ "reward": 0.4085937717463821,
1796
+ "reward_std": 0.43159425538033247,
1797
+ "rewards/end_of_conversation_reward_func": 0.06875000125728548,
1798
+ "rewards/end_rm_reward_func": 0.34375,
1799
+ "rewards/length_reward_func": -0.00390625,
1800
+ "rewards/thinking_reward_func": 0.0,
1801
+ "step": 143
1802
+ },
1803
+ {
1804
+ "clip_ratio": 0.005346491030650213,
1805
+ "epoch": 0.1152,
1806
+ "grad_norm": 0.8232427405557934,
1807
+ "kl": 2.2227783203125,
1808
+ "learning_rate": 5e-07,
1809
+ "loss": 0.0771,
1810
+ "step": 144
1811
+ },
1812
+ {
1813
+ "clip_ratio": 0.0,
1814
+ "completion_length": 2151.1484375,
1815
+ "epoch": 0.116,
1816
+ "grad_norm": 1.151846893342153,
1817
+ "kl": 2.817626953125,
1818
+ "learning_rate": 5e-07,
1819
+ "loss": 0.0217,
1820
+ "reward": 0.2933593824855052,
1821
+ "reward_std": 0.3206550294999033,
1822
+ "rewards/end_of_conversation_reward_func": 0.07265625079162419,
1823
+ "rewards/end_rm_reward_func": 0.228515625,
1824
+ "rewards/length_reward_func": -0.0078125,
1825
+ "rewards/thinking_reward_func": 0.0,
1826
+ "step": 145
1827
+ },
1828
+ {
1829
+ "clip_ratio": 0.006764089310308918,
1830
+ "epoch": 0.1168,
1831
+ "grad_norm": 0.9623961306886136,
1832
+ "kl": 3.7879638671875,
1833
+ "learning_rate": 5e-07,
1834
+ "loss": 0.0207,
1835
+ "step": 146
1836
+ },
1837
+ {
1838
+ "clip_ratio": 0.0,
1839
+ "completion_length": 2613.7265625,
1840
+ "epoch": 0.1176,
1841
+ "grad_norm": 0.924531089984747,
1842
+ "kl": 0.8990478515625,
1843
+ "learning_rate": 5e-07,
1844
+ "loss": 0.0676,
1845
+ "reward": 0.39667969988659024,
1846
+ "reward_std": 0.4251254890114069,
1847
+ "rewards/end_of_conversation_reward_func": 0.06562500074505806,
1848
+ "rewards/end_rm_reward_func": 0.3466796875,
1849
+ "rewards/length_reward_func": -0.015625,
1850
+ "rewards/thinking_reward_func": 0.0,
1851
+ "step": 147
1852
+ },
1853
+ {
1854
+ "clip_ratio": 0.005301513941958547,
1855
+ "epoch": 0.1184,
1856
+ "grad_norm": 0.8069427285929358,
1857
+ "kl": 1.39166259765625,
1858
+ "learning_rate": 5e-07,
1859
+ "loss": 0.0669,
1860
+ "step": 148
1861
+ },
1862
+ {
1863
+ "clip_ratio": 0.0,
1864
+ "completion_length": 2272.7734375,
1865
+ "epoch": 0.1192,
1866
+ "grad_norm": 0.9723370963767047,
1867
+ "kl": 0.997314453125,
1868
+ "learning_rate": 5e-07,
1869
+ "loss": 0.0187,
1870
+ "reward": 0.4199218891444616,
1871
+ "reward_std": 0.4015230783261359,
1872
+ "rewards/end_of_conversation_reward_func": 0.06640625093132257,
1873
+ "rewards/end_rm_reward_func": 0.365234375,
1874
+ "rewards/length_reward_func": -0.01171875,
1875
+ "rewards/thinking_reward_func": 0.0,
1876
+ "step": 149
1877
+ },
1878
+ {
1879
+ "clip_ratio": 0.005973719438770786,
1880
+ "epoch": 0.12,
1881
+ "grad_norm": 0.8532859182657302,
1882
+ "kl": 0.9261474609375,
1883
+ "learning_rate": 5e-07,
1884
+ "loss": 0.0178,
1885
+ "step": 150
1886
+ },
1887
+ {
1888
+ "clip_ratio": 0.0,
1889
+ "completion_length": 2505.875,
1890
+ "epoch": 0.1208,
1891
+ "grad_norm": 0.8842796434094805,
1892
+ "kl": 9.147705078125,
1893
+ "learning_rate": 5e-07,
1894
+ "loss": 0.0431,
1895
+ "reward": 0.3224609545432031,
1896
+ "reward_std": 0.512933537364006,
1897
+ "rewards/end_of_conversation_reward_func": 0.06171875155996531,
1898
+ "rewards/end_rm_reward_func": 0.2724609375,
1899
+ "rewards/length_reward_func": -0.01171875,
1900
+ "rewards/thinking_reward_func": 0.0,
1901
+ "step": 151
1902
+ },
1903
+ {
1904
+ "clip_ratio": 0.006512533509521745,
1905
+ "epoch": 0.1216,
1906
+ "grad_norm": 0.8332956238777746,
1907
+ "kl": 6.146240234375,
1908
+ "learning_rate": 5e-07,
1909
+ "loss": 0.0423,
1910
+ "step": 152
1911
+ },
1912
+ {
1913
+ "clip_ratio": 0.0,
1914
+ "completion_length": 2544.953125,
1915
+ "epoch": 0.1224,
1916
+ "grad_norm": 0.9874027538635356,
1917
+ "kl": 14.062255859375,
1918
+ "learning_rate": 5e-07,
1919
+ "loss": -0.0164,
1920
+ "reward": 0.17890625371364877,
1921
+ "reward_std": 0.379497186280787,
1922
+ "rewards/end_of_conversation_reward_func": 0.053906250395812094,
1923
+ "rewards/end_rm_reward_func": 0.13671875,
1924
+ "rewards/length_reward_func": -0.01171875,
1925
+ "rewards/thinking_reward_func": 0.0,
1926
+ "step": 153
1927
+ },
1928
+ {
1929
+ "clip_ratio": 0.004760816096677445,
1930
+ "epoch": 0.1232,
1931
+ "grad_norm": 0.8194951383155811,
1932
+ "kl": 25.712646484375,
1933
+ "learning_rate": 5e-07,
1934
+ "loss": -0.017,
1935
+ "step": 154
1936
+ },
1937
+ {
1938
+ "clip_ratio": 0.0,
1939
+ "completion_length": 2325.8828125,
1940
+ "epoch": 0.124,
1941
+ "grad_norm": 0.8787405473781513,
1942
+ "kl": 2.60302734375,
1943
+ "learning_rate": 5e-07,
1944
+ "loss": 0.0489,
1945
+ "reward": 0.43007815058808774,
1946
+ "reward_std": 0.37591410893946886,
1947
+ "rewards/end_of_conversation_reward_func": 0.07656250160653144,
1948
+ "rewards/end_rm_reward_func": 0.373046875,
1949
+ "rewards/length_reward_func": -0.01953125,
1950
+ "rewards/thinking_reward_func": 0.0,
1951
+ "step": 155
1952
+ },
1953
+ {
1954
+ "clip_ratio": 0.005131626487127505,
1955
+ "epoch": 0.1248,
1956
+ "grad_norm": 0.860882474096142,
1957
+ "kl": 2.1358642578125,
1958
+ "learning_rate": 5e-07,
1959
+ "loss": 0.0482,
1960
+ "step": 156
1961
+ },
1962
+ {
1963
+ "clip_ratio": 0.0,
1964
+ "completion_length": 1997.8984375,
1965
+ "epoch": 0.1256,
1966
+ "grad_norm": 4.174478136933485,
1967
+ "kl": 126.7437744140625,
1968
+ "learning_rate": 5e-07,
1969
+ "loss": 0.0147,
1970
+ "reward": 0.3750000196741894,
1971
+ "reward_std": 0.40887491311877966,
1972
+ "rewards/end_of_conversation_reward_func": 0.07421875069849193,
1973
+ "rewards/end_rm_reward_func": 0.3046875,
1974
+ "rewards/length_reward_func": -0.00390625,
1975
+ "rewards/thinking_reward_func": 0.0,
1976
+ "step": 157
1977
+ },
1978
+ {
1979
+ "clip_ratio": 0.006120361678767949,
1980
+ "epoch": 0.1264,
1981
+ "grad_norm": 1.4963821994530664,
1982
+ "kl": 273.1322021484375,
1983
+ "learning_rate": 5e-07,
1984
+ "loss": 0.0139,
1985
+ "step": 158
1986
+ },
1987
+ {
1988
+ "clip_ratio": 0.0,
1989
+ "completion_length": 2511.359375,
1990
+ "epoch": 0.1272,
1991
+ "grad_norm": 5.367528712708823,
1992
+ "kl": 5.2606201171875,
1993
+ "learning_rate": 5e-07,
1994
+ "loss": 0.0698,
1995
+ "reward": 0.3287109578377567,
1996
+ "reward_std": 0.3992913840338588,
1997
+ "rewards/end_of_conversation_reward_func": 0.06406250142026693,
1998
+ "rewards/end_rm_reward_func": 0.2724609375,
1999
+ "rewards/length_reward_func": -0.0078125,
2000
+ "rewards/thinking_reward_func": 0.0,
2001
+ "step": 159
2002
+ },
2003
+ {
2004
+ "clip_ratio": 0.005198820639634505,
2005
+ "epoch": 0.128,
2006
+ "grad_norm": 2.8531678389715998,
2007
+ "kl": 4.1246337890625,
2008
+ "learning_rate": 5e-07,
2009
+ "loss": 0.0663,
2010
+ "step": 160
2011
+ },
2012
+ {
2013
+ "clip_ratio": 0.0,
2014
+ "completion_length": 2238.2734375,
2015
+ "epoch": 0.1288,
2016
+ "grad_norm": 1.2910611646405146,
2017
+ "kl": 2.57861328125,
2018
+ "learning_rate": 5e-07,
2019
+ "loss": 0.0318,
2020
+ "reward": 0.24882814101874828,
2021
+ "reward_std": 0.3937357231043279,
2022
+ "rewards/end_of_conversation_reward_func": 0.0710937506519258,
2023
+ "rewards/end_rm_reward_func": 0.185546875,
2024
+ "rewards/length_reward_func": -0.0078125,
2025
+ "rewards/thinking_reward_func": 0.0,
2026
+ "step": 161
2027
+ },
2028
+ {
2029
+ "clip_ratio": 0.006061407417291775,
2030
+ "epoch": 0.1296,
2031
+ "grad_norm": 1.1788151032961487,
2032
+ "kl": 2.96826171875,
2033
+ "learning_rate": 5e-07,
2034
+ "loss": 0.0305,
2035
+ "step": 162
2036
+ },
2037
+ {
2038
+ "clip_ratio": 0.0,
2039
+ "completion_length": 1621.8671875,
2040
+ "epoch": 0.1304,
2041
+ "grad_norm": 1.082482183152501,
2042
+ "kl": 22.7098388671875,
2043
+ "learning_rate": 5e-07,
2044
+ "loss": 0.0309,
2045
+ "reward": 0.4742187724914402,
2046
+ "reward_std": 0.42131141386926174,
2047
+ "rewards/end_of_conversation_reward_func": 0.07968750153668225,
2048
+ "rewards/end_rm_reward_func": 0.39453125,
2049
+ "rewards/length_reward_func": 0.0,
2050
+ "rewards/thinking_reward_func": 0.0,
2051
+ "step": 163
2052
+ },
2053
+ {
2054
+ "clip_ratio": 0.007301741745322943,
2055
+ "epoch": 0.1312,
2056
+ "grad_norm": 0.999311109978907,
2057
+ "kl": 28.77685546875,
2058
+ "learning_rate": 5e-07,
2059
+ "loss": 0.0297,
2060
+ "step": 164
2061
+ },
2062
+ {
2063
+ "clip_ratio": 0.0,
2064
+ "completion_length": 2164.078125,
2065
+ "epoch": 0.132,
2066
+ "grad_norm": 1.2711815845501575,
2067
+ "kl": 11.022705078125,
2068
+ "learning_rate": 5e-07,
2069
+ "loss": 0.007,
2070
+ "reward": 0.266796886222437,
2071
+ "reward_std": 0.38234878331422806,
2072
+ "rewards/end_of_conversation_reward_func": 0.06953125045401976,
2073
+ "rewards/end_rm_reward_func": 0.208984375,
2074
+ "rewards/length_reward_func": -0.01171875,
2075
+ "rewards/thinking_reward_func": 0.0,
2076
+ "step": 165
2077
+ },
2078
+ {
2079
+ "clip_ratio": 0.005417483043856919,
2080
+ "epoch": 0.1328,
2081
+ "grad_norm": 1.0349824323527632,
2082
+ "kl": 56.939208984375,
2083
+ "learning_rate": 5e-07,
2084
+ "loss": 0.0058,
2085
+ "step": 166
2086
+ },
2087
+ {
2088
+ "clip_ratio": 0.0,
2089
+ "completion_length": 1862.1171875,
2090
+ "epoch": 0.1336,
2091
+ "grad_norm": 1.9132332469984104,
2092
+ "kl": 15.81640625,
2093
+ "learning_rate": 5e-07,
2094
+ "loss": 0.008,
2095
+ "reward": 0.20527344779111445,
2096
+ "reward_std": 0.31551461201161146,
2097
+ "rewards/end_of_conversation_reward_func": 0.07734375126892701,
2098
+ "rewards/end_rm_reward_func": 0.1318359375,
2099
+ "rewards/length_reward_func": -0.00390625,
2100
+ "rewards/thinking_reward_func": 0.0,
2101
+ "step": 167
2102
+ },
2103
+ {
2104
+ "clip_ratio": 0.006755854556104168,
2105
+ "epoch": 0.1344,
2106
+ "grad_norm": 1.1876373433288951,
2107
+ "kl": 14.31689453125,
2108
+ "learning_rate": 5e-07,
2109
+ "loss": 0.0065,
2110
+ "step": 168
2111
+ },
2112
+ {
2113
+ "clip_ratio": 0.0,
2114
+ "completion_length": 1881.125,
2115
+ "epoch": 0.1352,
2116
+ "grad_norm": 1.1641180467318737,
2117
+ "kl": 314.045654296875,
2118
+ "learning_rate": 5e-07,
2119
+ "loss": 0.0178,
2120
+ "reward": 0.3947265843162313,
2121
+ "reward_std": 0.41996311163529754,
2122
+ "rewards/end_of_conversation_reward_func": 0.07343749981373549,
2123
+ "rewards/end_rm_reward_func": 0.3291015625,
2124
+ "rewards/length_reward_func": -0.0078125,
2125
+ "rewards/thinking_reward_func": 0.0,
2126
+ "step": 169
2127
+ },
2128
+ {
2129
+ "clip_ratio": 0.0057207249192288145,
2130
+ "epoch": 0.136,
2131
+ "grad_norm": 1.0261348607435299,
2132
+ "kl": 365.5631103515625,
2133
+ "learning_rate": 5e-07,
2134
+ "loss": 0.0164,
2135
+ "step": 170
2136
+ },
2137
+ {
2138
+ "clip_ratio": 0.0,
2139
+ "completion_length": 2508.2734375,
2140
+ "epoch": 0.1368,
2141
+ "grad_norm": 1.8601217689473675,
2142
+ "kl": 4.70849609375,
2143
+ "learning_rate": 5e-07,
2144
+ "loss": 0.0189,
2145
+ "reward": 0.37148438789881766,
2146
+ "reward_std": 0.39709692588075995,
2147
+ "rewards/end_of_conversation_reward_func": 0.06874999997671694,
2148
+ "rewards/end_rm_reward_func": 0.310546875,
2149
+ "rewards/length_reward_func": -0.0078125,
2150
+ "rewards/thinking_reward_func": 0.0,
2151
+ "step": 171
2152
+ },
2153
+ {
2154
+ "clip_ratio": 0.004716894996818155,
2155
+ "epoch": 0.1376,
2156
+ "grad_norm": 1.1874233704490673,
2157
+ "kl": 17.053955078125,
2158
+ "learning_rate": 5e-07,
2159
+ "loss": 0.017,
2160
+ "step": 172
2161
+ },
2162
+ {
2163
+ "clip_ratio": 0.0,
2164
+ "completion_length": 2176.171875,
2165
+ "epoch": 0.1384,
2166
+ "grad_norm": 2.060042420988078,
2167
+ "kl": 181.342529296875,
2168
+ "learning_rate": 5e-07,
2169
+ "loss": 0.0493,
2170
+ "reward": 0.30000001145526767,
2171
+ "reward_std": 0.35801823483780026,
2172
+ "rewards/end_of_conversation_reward_func": 0.06953125121071935,
2173
+ "rewards/end_rm_reward_func": 0.23046875,
2174
+ "rewards/length_reward_func": 0.0,
2175
+ "rewards/thinking_reward_func": 0.0,
2176
+ "step": 173
2177
+ },
2178
+ {
2179
+ "clip_ratio": 0.012096417922293767,
2180
+ "epoch": 0.1392,
2181
+ "grad_norm": 2.4188316605382605,
2182
+ "kl": 385.28857421875,
2183
+ "learning_rate": 5e-07,
2184
+ "loss": 0.0476,
2185
+ "step": 174
2186
+ },
2187
+ {
2188
+ "clip_ratio": 0.0,
2189
+ "completion_length": 1939.6875,
2190
+ "epoch": 0.14,
2191
+ "grad_norm": 2.2213507537695856,
2192
+ "kl": 412.21533203125,
2193
+ "learning_rate": 5e-07,
2194
+ "loss": 0.0376,
2195
+ "reward": 0.5171875233063474,
2196
+ "reward_std": 0.4006890896707773,
2197
+ "rewards/end_of_conversation_reward_func": 0.0796875013038516,
2198
+ "rewards/end_rm_reward_func": 0.44140625,
2199
+ "rewards/length_reward_func": -0.00390625,
2200
+ "rewards/thinking_reward_func": 0.0,
2201
+ "step": 175
2202
+ },
2203
+ {
2204
+ "clip_ratio": 0.008669883391121402,
2205
+ "epoch": 0.1408,
2206
+ "grad_norm": 2.0154021188215534,
2207
+ "kl": 349.34228515625,
2208
+ "learning_rate": 5e-07,
2209
+ "loss": 0.035,
2210
+ "step": 176
2211
+ },
2212
+ {
2213
+ "clip_ratio": 0.0,
2214
+ "completion_length": 2474.7265625,
2215
+ "epoch": 0.1416,
2216
+ "grad_norm": 2.9429100925925993,
2217
+ "kl": 36.90185546875,
2218
+ "learning_rate": 5e-07,
2219
+ "loss": 0.0301,
2220
+ "reward": 0.47812502505257726,
2221
+ "reward_std": 0.4000142142176628,
2222
+ "rewards/end_of_conversation_reward_func": 0.07578125200234354,
2223
+ "rewards/end_rm_reward_func": 0.4140625,
2224
+ "rewards/length_reward_func": -0.01171875,
2225
+ "rewards/thinking_reward_func": 0.0,
2226
+ "step": 177
2227
+ },
2228
+ {
2229
+ "clip_ratio": 0.007487929397029802,
2230
+ "epoch": 0.1424,
2231
+ "grad_norm": 1.7072132896520176,
2232
+ "kl": 37.833984375,
2233
+ "learning_rate": 5e-07,
2234
+ "loss": 0.0267,
2235
+ "step": 178
2236
+ },
2237
+ {
2238
+ "clip_ratio": 0.0,
2239
+ "completion_length": 2216.28125,
2240
+ "epoch": 0.1432,
2241
+ "grad_norm": 3.4715981881060096,
2242
+ "kl": 153.06494140625,
2243
+ "learning_rate": 5e-07,
2244
+ "loss": 0.0629,
2245
+ "reward": 0.430859393440187,
2246
+ "reward_std": 0.4135680345352739,
2247
+ "rewards/end_of_conversation_reward_func": 0.06562500190921128,
2248
+ "rewards/end_rm_reward_func": 0.369140625,
2249
+ "rewards/length_reward_func": -0.00390625,
2250
+ "rewards/thinking_reward_func": 0.0,
2251
+ "step": 179
2252
+ },
2253
+ {
2254
+ "clip_ratio": 0.007125947595341131,
2255
+ "epoch": 0.144,
2256
+ "grad_norm": 1.7642237159324998,
2257
+ "kl": 372.9677734375,
2258
+ "learning_rate": 5e-07,
2259
+ "loss": 0.0582,
2260
+ "step": 180
2261
+ },
2262
+ {
2263
+ "clip_ratio": 0.0,
2264
+ "completion_length": 2396.046875,
2265
+ "epoch": 0.1448,
2266
+ "grad_norm": 2.626090932602815,
2267
+ "kl": 134.4459228515625,
2268
+ "learning_rate": 5e-07,
2269
+ "loss": 0.0593,
2270
+ "reward": 0.3869140747701749,
2271
+ "reward_std": 0.3422806654125452,
2272
+ "rewards/end_of_conversation_reward_func": 0.06953125167638063,
2273
+ "rewards/end_rm_reward_func": 0.3212890625,
2274
+ "rewards/length_reward_func": -0.00390625,
2275
+ "rewards/thinking_reward_func": 0.0,
2276
+ "step": 181
2277
+ },
2278
+ {
2279
+ "clip_ratio": 0.01481604718719609,
2280
+ "epoch": 0.1456,
2281
+ "grad_norm": 4.174800170660322,
2282
+ "kl": 131.9783935546875,
2283
+ "learning_rate": 5e-07,
2284
+ "loss": 0.0572,
2285
+ "step": 182
2286
+ },
2287
+ {
2288
+ "clip_ratio": 0.0,
2289
+ "completion_length": 2284.40625,
2290
+ "epoch": 0.1464,
2291
+ "grad_norm": 4.005039457486521,
2292
+ "kl": 1621.6591796875,
2293
+ "learning_rate": 5e-07,
2294
+ "loss": 0.0388,
2295
+ "reward": 0.3603515757713467,
2296
+ "reward_std": 0.4121582773514092,
2297
+ "rewards/end_of_conversation_reward_func": 0.07421875139698386,
2298
+ "rewards/end_rm_reward_func": 0.2861328125,
2299
+ "rewards/length_reward_func": 0.0,
2300
+ "rewards/thinking_reward_func": 0.0,
2301
+ "step": 183
2302
+ },
2303
+ {
2304
+ "clip_ratio": 0.009662889962783083,
2305
+ "epoch": 0.1472,
2306
+ "grad_norm": 2.116076197062108,
2307
+ "kl": 1933.222412109375,
2308
+ "learning_rate": 5e-07,
2309
+ "loss": 0.0342,
2310
+ "step": 184
2311
+ },
2312
+ {
2313
+ "clip_ratio": 0.0,
2314
+ "completion_length": 2164.0546875,
2315
+ "epoch": 0.148,
2316
+ "grad_norm": 3.79272536544489,
2317
+ "kl": 8153.509033203125,
2318
+ "learning_rate": 5e-07,
2319
+ "loss": 0.0173,
2320
+ "reward": 0.24707032029982656,
2321
+ "reward_std": 0.33177149668335915,
2322
+ "rewards/end_of_conversation_reward_func": 0.07031250128056854,
2323
+ "rewards/end_rm_reward_func": 0.1767578125,
2324
+ "rewards/length_reward_func": 0.0,
2325
+ "rewards/thinking_reward_func": 0.0,
2326
+ "step": 185
2327
+ },
2328
+ {
2329
+ "clip_ratio": 0.007355456036748365,
2330
+ "epoch": 0.1488,
2331
+ "grad_norm": 2.492559543240363,
2332
+ "kl": 19430.03955078125,
2333
+ "learning_rate": 5e-07,
2334
+ "loss": 0.0143,
2335
+ "step": 186
2336
+ },
2337
+ {
2338
+ "clip_ratio": 0.0,
2339
+ "completion_length": 2088.5234375,
2340
+ "epoch": 0.1496,
2341
+ "grad_norm": 3.215340142433475,
2342
+ "kl": 1088.0703125,
2343
+ "learning_rate": 5e-07,
2344
+ "loss": 0.0347,
2345
+ "reward": 0.32714844518341124,
2346
+ "reward_std": 0.3099647618364543,
2347
+ "rewards/end_of_conversation_reward_func": 0.07812500139698386,
2348
+ "rewards/end_rm_reward_func": 0.2490234375,
2349
+ "rewards/length_reward_func": 0.0,
2350
+ "rewards/thinking_reward_func": 0.0,
2351
+ "step": 187
2352
+ },
2353
+ {
2354
+ "clip_ratio": 0.007153055747039616,
2355
+ "epoch": 0.1504,
2356
+ "grad_norm": 2.979896488060616,
2357
+ "kl": 884.30126953125,
2358
+ "learning_rate": 5e-07,
2359
+ "loss": 0.0304,
2360
+ "step": 188
2361
+ },
2362
+ {
2363
+ "clip_ratio": 0.0,
2364
+ "completion_length": 2295.28125,
2365
+ "epoch": 0.1512,
2366
+ "grad_norm": 4.27184297703827,
2367
+ "kl": 24.62060546875,
2368
+ "learning_rate": 5e-07,
2369
+ "loss": -0.0026,
2370
+ "reward": 0.48769533238373697,
2371
+ "reward_std": 0.4020336586982012,
2372
+ "rewards/end_of_conversation_reward_func": 0.07265625131549314,
2373
+ "rewards/end_rm_reward_func": 0.4150390625,
2374
+ "rewards/length_reward_func": 0.0,
2375
+ "rewards/thinking_reward_func": 0.0,
2376
+ "step": 189
2377
+ },
2378
+ {
2379
+ "clip_ratio": 0.005939892347669229,
2380
+ "epoch": 0.152,
2381
+ "grad_norm": 3.3442192954819,
2382
+ "kl": 17.80908203125,
2383
+ "learning_rate": 5e-07,
2384
+ "loss": -0.0069,
2385
+ "step": 190
2386
+ },
2387
+ {
2388
+ "clip_ratio": 0.0,
2389
+ "completion_length": 2123.578125,
2390
+ "epoch": 0.1528,
2391
+ "grad_norm": 6.018069933911673,
2392
+ "kl": 6821.18798828125,
2393
+ "learning_rate": 5e-07,
2394
+ "loss": 0.0186,
2395
+ "reward": 0.44394533056765795,
2396
+ "reward_std": 0.4120704475790262,
2397
+ "rewards/end_of_conversation_reward_func": 0.07968750083819032,
2398
+ "rewards/end_rm_reward_func": 0.3642578125,
2399
+ "rewards/length_reward_func": 0.0,
2400
+ "rewards/thinking_reward_func": 0.0,
2401
+ "step": 191
2402
+ },
2403
+ {
2404
+ "clip_ratio": 0.019422179379034787,
2405
+ "epoch": 0.1536,
2406
+ "grad_norm": 6.0000850540905555,
2407
+ "kl": 10920.389404296875,
2408
+ "learning_rate": 5e-07,
2409
+ "loss": 0.0159,
2410
+ "step": 192
2411
+ },
2412
+ {
2413
+ "clip_ratio": 0.0,
2414
+ "completion_length": 2315.28125,
2415
+ "epoch": 0.1544,
2416
+ "grad_norm": 5.51028975235637,
2417
+ "kl": 113.30224609375,
2418
+ "learning_rate": 5e-07,
2419
+ "loss": 0.0369,
2420
+ "reward": 0.41445315489545465,
2421
+ "reward_std": 0.40713366749696434,
2422
+ "rewards/end_of_conversation_reward_func": 0.08046875178115442,
2423
+ "rewards/end_rm_reward_func": 0.341796875,
2424
+ "rewards/length_reward_func": -0.0078125,
2425
+ "rewards/thinking_reward_func": 0.0,
2426
+ "step": 193
2427
+ },
2428
+ {
2429
+ "clip_ratio": 0.010416857578093186,
2430
+ "epoch": 0.1552,
2431
+ "grad_norm": 4.641303725834707,
2432
+ "kl": 79.856689453125,
2433
+ "learning_rate": 5e-07,
2434
+ "loss": 0.0318,
2435
+ "step": 194
2436
+ },
2437
+ {
2438
+ "clip_ratio": 0.0,
2439
+ "completion_length": 2337.7265625,
2440
+ "epoch": 0.156,
2441
+ "grad_norm": 7.337511224807291,
2442
+ "kl": 121.304443359375,
2443
+ "learning_rate": 5e-07,
2444
+ "loss": 0.0442,
2445
+ "reward": 0.3572265817783773,
2446
+ "reward_std": 0.44290671218186617,
2447
+ "rewards/end_of_conversation_reward_func": 0.07890625100117177,
2448
+ "rewards/end_rm_reward_func": 0.2822265625,
2449
+ "rewards/length_reward_func": -0.00390625,
2450
+ "rewards/thinking_reward_func": 0.0,
2451
+ "step": 195
2452
+ },
2453
+ {
2454
+ "clip_ratio": 0.01027121691731736,
2455
+ "epoch": 0.1568,
2456
+ "grad_norm": 5.231827919249724,
2457
+ "kl": 134.763427734375,
2458
+ "learning_rate": 5e-07,
2459
+ "loss": 0.0394,
2460
+ "step": 196
2461
+ },
2462
+ {
2463
+ "clip_ratio": 0.0,
2464
+ "completion_length": 2069.0546875,
2465
+ "epoch": 0.1576,
2466
+ "grad_norm": 7.402698135110819,
2467
+ "kl": 52.291015625,
2468
+ "learning_rate": 5e-07,
2469
+ "loss": 0.0311,
2470
+ "reward": 0.38632813934236765,
2471
+ "reward_std": 0.3869206882081926,
2472
+ "rewards/end_of_conversation_reward_func": 0.07187500083819032,
2473
+ "rewards/end_rm_reward_func": 0.318359375,
2474
+ "rewards/length_reward_func": -0.00390625,
2475
+ "rewards/thinking_reward_func": 0.0,
2476
+ "step": 197
2477
+ },
2478
+ {
2479
+ "clip_ratio": 0.006990124413277954,
2480
+ "epoch": 0.1584,
2481
+ "grad_norm": 113.50707154622745,
2482
+ "kl": 21.02978515625,
2483
+ "learning_rate": 5e-07,
2484
+ "loss": 0.0278,
2485
+ "step": 198
2486
+ },
2487
+ {
2488
+ "clip_ratio": 0.0,
2489
+ "completion_length": 2180.6640625,
2490
+ "epoch": 0.1592,
2491
+ "grad_norm": 8.268979237999838,
2492
+ "kl": 146.75,
2493
+ "learning_rate": 5e-07,
2494
+ "loss": 0.0363,
2495
+ "reward": 0.5003906521014869,
2496
+ "reward_std": 0.4240156547166407,
2497
+ "rewards/end_of_conversation_reward_func": 0.0804687519557774,
2498
+ "rewards/end_rm_reward_func": 0.419921875,
2499
+ "rewards/length_reward_func": 0.0,
2500
+ "rewards/thinking_reward_func": 0.0,
2501
+ "step": 199
2502
+ },
2503
+ {
2504
+ "clip_ratio": 0.0194309915532358,
2505
+ "epoch": 0.16,
2506
+ "grad_norm": 8.843678882129485,
2507
+ "kl": 351.8544921875,
2508
+ "learning_rate": 5e-07,
2509
+ "loss": 0.0337,
2510
+ "step": 200
2511
+ },
2512
+ {
2513
+ "clip_ratio": 0.0,
2514
+ "completion_length": 2056.3515625,
2515
+ "epoch": 0.1608,
2516
+ "grad_norm": 6.868955922992306,
2517
+ "kl": 53.767578125,
2518
+ "learning_rate": 5e-07,
2519
+ "loss": 0.036,
2520
+ "reward": 0.45488282945007086,
2521
+ "reward_std": 0.41126722283661366,
2522
+ "rewards/end_of_conversation_reward_func": 0.0867187506519258,
2523
+ "rewards/end_rm_reward_func": 0.3681640625,
2524
+ "rewards/length_reward_func": 0.0,
2525
+ "rewards/thinking_reward_func": 0.0,
2526
+ "step": 201
2527
+ },
2528
+ {
2529
+ "clip_ratio": 0.004734704503789544,
2530
+ "epoch": 0.1616,
2531
+ "grad_norm": 4.719162650271088,
2532
+ "kl": 35.9853515625,
2533
+ "learning_rate": 5e-07,
2534
+ "loss": 0.0269,
2535
+ "step": 202
2536
+ },
2537
+ {
2538
+ "clip_ratio": 0.0,
2539
+ "completion_length": 2449.8671875,
2540
+ "epoch": 0.1624,
2541
+ "grad_norm": 9.848426982264245,
2542
+ "kl": 104.44140625,
2543
+ "learning_rate": 5e-07,
2544
+ "loss": 0.0108,
2545
+ "reward": 0.3212890766444616,
2546
+ "reward_std": 0.34017279790714383,
2547
+ "rewards/end_of_conversation_reward_func": 0.06640625069849193,
2548
+ "rewards/end_rm_reward_func": 0.2587890625,
2549
+ "rewards/length_reward_func": -0.00390625,
2550
+ "rewards/thinking_reward_func": 0.0,
2551
+ "step": 203
2552
+ },
2553
+ {
2554
+ "clip_ratio": 0.012477430194849148,
2555
+ "epoch": 0.1632,
2556
+ "grad_norm": 5.484298870932829,
2557
+ "kl": 146.384765625,
2558
+ "learning_rate": 5e-07,
2559
+ "loss": 0.0006,
2560
+ "step": 204
2561
+ },
2562
+ {
2563
+ "clip_ratio": 0.0,
2564
+ "completion_length": 1957.1015625,
2565
+ "epoch": 0.164,
2566
+ "grad_norm": 11.459849219468296,
2567
+ "kl": 317.099609375,
2568
+ "learning_rate": 5e-07,
2569
+ "loss": 0.0305,
2570
+ "reward": 0.48828127491287887,
2571
+ "reward_std": 0.5096489517018199,
2572
+ "rewards/end_of_conversation_reward_func": 0.07812500046566129,
2573
+ "rewards/end_rm_reward_func": 0.41015625,
2574
+ "rewards/length_reward_func": 0.0,
2575
+ "rewards/thinking_reward_func": 0.0,
2576
+ "step": 205
2577
+ },
2578
+ {
2579
+ "clip_ratio": 0.008903506706701592,
2580
+ "epoch": 0.1648,
2581
+ "grad_norm": 6.73218235011968,
2582
+ "kl": 414.3935546875,
2583
+ "learning_rate": 5e-07,
2584
+ "loss": 0.018,
2585
+ "step": 206
2586
+ },
2587
+ {
2588
+ "clip_ratio": 0.0,
2589
+ "completion_length": 1970.984375,
2590
+ "epoch": 0.1656,
2591
+ "grad_norm": 8.656738486892705,
2592
+ "kl": 246.80859375,
2593
+ "learning_rate": 5e-07,
2594
+ "loss": 0.0585,
2595
+ "reward": 0.5083984585944563,
2596
+ "reward_std": 0.4745393330231309,
2597
+ "rewards/end_of_conversation_reward_func": 0.07578125153668225,
2598
+ "rewards/end_rm_reward_func": 0.4365234375,
2599
+ "rewards/length_reward_func": -0.00390625,
2600
+ "rewards/thinking_reward_func": 0.0,
2601
+ "step": 207
2602
+ },
2603
+ {
2604
+ "clip_ratio": 0.04178383277030662,
2605
+ "epoch": 0.1664,
2606
+ "grad_norm": 20.922629331798802,
2607
+ "kl": 279.943359375,
2608
+ "learning_rate": 5e-07,
2609
+ "loss": 0.0645,
2610
+ "step": 208
2611
+ },
2612
+ {
2613
+ "clip_ratio": 0.0,
2614
+ "completion_length": 1793.3828125,
2615
+ "epoch": 0.1672,
2616
+ "grad_norm": 10.449885777859176,
2617
+ "kl": 294.4990234375,
2618
+ "learning_rate": 5e-07,
2619
+ "loss": 0.0182,
2620
+ "reward": 0.5263672126457095,
2621
+ "reward_std": 0.4001456112600863,
2622
+ "rewards/end_of_conversation_reward_func": 0.08203125139698386,
2623
+ "rewards/end_rm_reward_func": 0.4443359375,
2624
+ "rewards/length_reward_func": 0.0,
2625
+ "rewards/thinking_reward_func": 0.0,
2626
+ "step": 209
2627
+ },
2628
+ {
2629
+ "clip_ratio": 0.025160407996736467,
2630
+ "epoch": 0.168,
2631
+ "grad_norm": 17.92069739644721,
2632
+ "kl": 305.3837890625,
2633
+ "learning_rate": 5e-07,
2634
+ "loss": 0.0173,
2635
+ "step": 210
2636
+ },
2637
+ {
2638
+ "clip_ratio": 0.0,
2639
+ "completion_length": 2268.9609375,
2640
+ "epoch": 0.1688,
2641
+ "grad_norm": 73.96836941822615,
2642
+ "kl": 747.4951171875,
2643
+ "learning_rate": 5e-07,
2644
+ "loss": 0.1343,
2645
+ "reward": 0.36914064013399184,
2646
+ "reward_std": 0.3273033651057631,
2647
+ "rewards/end_of_conversation_reward_func": 0.07812500093132257,
2648
+ "rewards/end_rm_reward_func": 0.291015625,
2649
+ "rewards/length_reward_func": 0.0,
2650
+ "rewards/thinking_reward_func": 0.0,
2651
+ "step": 211
2652
+ },
2653
+ {
2654
+ "clip_ratio": 0.012499632517574355,
2655
+ "epoch": 0.1696,
2656
+ "grad_norm": 18.974576313134882,
2657
+ "kl": 611.49267578125,
2658
+ "learning_rate": 5e-07,
2659
+ "loss": 0.0721,
2660
+ "step": 212
2661
+ },
2662
+ {
2663
+ "clip_ratio": 0.0,
2664
+ "completion_length": 2230.0,
2665
+ "epoch": 0.1704,
2666
+ "grad_norm": 6.681940389271876,
2667
+ "kl": 14805.2890625,
2668
+ "learning_rate": 5e-07,
2669
+ "loss": 0.0276,
2670
+ "reward": 0.3503906426485628,
2671
+ "reward_std": 0.4293831647373736,
2672
+ "rewards/end_of_conversation_reward_func": 0.06718750135041773,
2673
+ "rewards/end_rm_reward_func": 0.283203125,
2674
+ "rewards/length_reward_func": 0.0,
2675
+ "rewards/thinking_reward_func": 0.0,
2676
+ "step": 213
2677
+ },
2678
+ {
2679
+ "clip_ratio": 0.036163119453703985,
2680
+ "epoch": 0.1712,
2681
+ "grad_norm": 20.214531495705373,
2682
+ "kl": 30367.22509765625,
2683
+ "learning_rate": 5e-07,
2684
+ "loss": 0.0295,
2685
+ "step": 214
2686
+ },
2687
+ {
2688
+ "clip_ratio": 0.0,
2689
+ "completion_length": 2377.1953125,
2690
+ "epoch": 0.172,
2691
+ "grad_norm": 7.270360214395911,
2692
+ "kl": 457.0078125,
2693
+ "learning_rate": 5e-07,
2694
+ "loss": 0.0059,
2695
+ "reward": 0.3910156455822289,
2696
+ "reward_std": 0.3999810148961842,
2697
+ "rewards/end_of_conversation_reward_func": 0.08046875172294676,
2698
+ "rewards/end_rm_reward_func": 0.310546875,
2699
+ "rewards/length_reward_func": 0.0,
2700
+ "rewards/thinking_reward_func": 0.0,
2701
+ "step": 215
2702
+ },
2703
+ {
2704
+ "clip_ratio": 0.006911784948897548,
2705
+ "epoch": 0.1728,
2706
+ "grad_norm": 6.317486752283868,
2707
+ "kl": 325.4482421875,
2708
+ "learning_rate": 5e-07,
2709
+ "loss": -0.0004,
2710
+ "step": 216
2711
+ },
2712
+ {
2713
+ "clip_ratio": 0.0,
2714
+ "completion_length": 2922.046875,
2715
+ "epoch": 0.1736,
2716
+ "grad_norm": 6.82709648692313,
2717
+ "kl": 3166.01025390625,
2718
+ "learning_rate": 5e-07,
2719
+ "loss": 0.0348,
2720
+ "reward": 0.27285157423466444,
2721
+ "reward_std": 0.4200313645415008,
2722
+ "rewards/end_of_conversation_reward_func": 0.07265625067520887,
2723
+ "rewards/end_rm_reward_func": 0.2041015625,
2724
+ "rewards/length_reward_func": -0.00390625,
2725
+ "rewards/thinking_reward_func": 0.0,
2726
+ "step": 217
2727
+ },
2728
+ {
2729
+ "clip_ratio": 0.00761759614397306,
2730
+ "epoch": 0.1744,
2731
+ "grad_norm": 6.808138897589715,
2732
+ "kl": 3725.60400390625,
2733
+ "learning_rate": 5e-07,
2734
+ "loss": 0.0255,
2735
+ "step": 218
2736
+ },
2737
+ {
2738
+ "clip_ratio": 0.0,
2739
+ "completion_length": 1952.4453125,
2740
+ "epoch": 0.1752,
2741
+ "grad_norm": 8.424241871323705,
2742
+ "kl": 1067.37109375,
2743
+ "learning_rate": 5e-07,
2744
+ "loss": 0.0463,
2745
+ "reward": 0.34335939423181117,
2746
+ "reward_std": 0.297838720260188,
2747
+ "rewards/end_of_conversation_reward_func": 0.07578125176951289,
2748
+ "rewards/end_rm_reward_func": 0.275390625,
2749
+ "rewards/length_reward_func": -0.0078125,
2750
+ "rewards/thinking_reward_func": 0.0,
2751
+ "step": 219
2752
+ },
2753
+ {
2754
+ "clip_ratio": 0.010116227756952867,
2755
+ "epoch": 0.176,
2756
+ "grad_norm": 5.581257792673027,
2757
+ "kl": 643.158203125,
2758
+ "learning_rate": 5e-07,
2759
+ "loss": 0.0394,
2760
+ "step": 220
2761
+ },
2762
+ {
2763
+ "clip_ratio": 0.0,
2764
+ "completion_length": 2187.0078125,
2765
+ "epoch": 0.1768,
2766
+ "grad_norm": 8.701946640071931,
2767
+ "kl": 44.845703125,
2768
+ "learning_rate": 5e-07,
2769
+ "loss": 0.0026,
2770
+ "reward": 0.36250001611188054,
2771
+ "reward_std": 0.4365540761500597,
2772
+ "rewards/end_of_conversation_reward_func": 0.07734375179279596,
2773
+ "rewards/end_rm_reward_func": 0.28515625,
2774
+ "rewards/length_reward_func": 0.0,
2775
+ "rewards/thinking_reward_func": 0.0,
2776
+ "step": 221
2777
+ },
2778
+ {
2779
+ "clip_ratio": 0.012115928897401318,
2780
+ "epoch": 0.1776,
2781
+ "grad_norm": 6.840735832043148,
2782
+ "kl": 76.4052734375,
2783
+ "learning_rate": 5e-07,
2784
+ "loss": -0.0039,
2785
+ "step": 222
2786
+ },
2787
+ {
2788
+ "clip_ratio": 0.0,
2789
+ "completion_length": 2262.546875,
2790
+ "epoch": 0.1784,
2791
+ "grad_norm": 11.037911784681958,
2792
+ "kl": 392.87890625,
2793
+ "learning_rate": 5e-07,
2794
+ "loss": 0.0408,
2795
+ "reward": 0.3087890681345016,
2796
+ "reward_std": 0.40431320294737816,
2797
+ "rewards/end_of_conversation_reward_func": 0.07343750074505806,
2798
+ "rewards/end_rm_reward_func": 0.2392578125,
2799
+ "rewards/length_reward_func": -0.00390625,
2800
+ "rewards/thinking_reward_func": 0.0,
2801
+ "step": 223
2802
+ },
2803
+ {
2804
+ "clip_ratio": 0.020739365107147023,
2805
+ "epoch": 0.1792,
2806
+ "grad_norm": 10.349410625297242,
2807
+ "kl": 446.98828125,
2808
+ "learning_rate": 5e-07,
2809
+ "loss": 0.0332,
2810
+ "step": 224
2811
+ },
2812
+ {
2813
+ "clip_ratio": 0.0,
2814
+ "completion_length": 2353.828125,
2815
+ "epoch": 0.18,
2816
+ "grad_norm": 7.857636457593067,
2817
+ "kl": 49.89697265625,
2818
+ "learning_rate": 5e-07,
2819
+ "loss": 0.0002,
2820
+ "reward": 0.397070333128795,
2821
+ "reward_std": 0.3746516448445618,
2822
+ "rewards/end_of_conversation_reward_func": 0.08359375083819032,
2823
+ "rewards/end_rm_reward_func": 0.3134765625,
2824
+ "rewards/length_reward_func": 0.0,
2825
+ "rewards/thinking_reward_func": 0.0,
2826
+ "step": 225
2827
+ },
2828
+ {
2829
+ "clip_ratio": 0.04557889769785106,
2830
+ "epoch": 0.1808,
2831
+ "grad_norm": 32.46158867190515,
2832
+ "kl": 143.626953125,
2833
+ "learning_rate": 5e-07,
2834
+ "loss": 0.008,
2835
+ "step": 226
2836
+ },
2837
+ {
2838
+ "clip_ratio": 0.0,
2839
+ "completion_length": 1967.0078125,
2840
+ "epoch": 0.1816,
2841
+ "grad_norm": 7.690726728971795,
2842
+ "kl": 168.8681640625,
2843
+ "learning_rate": 5e-07,
2844
+ "loss": 0.0427,
2845
+ "reward": 0.4964843970956281,
2846
+ "reward_std": 0.4297056058421731,
2847
+ "rewards/end_of_conversation_reward_func": 0.08046875172294676,
2848
+ "rewards/end_rm_reward_func": 0.416015625,
2849
+ "rewards/length_reward_func": 0.0,
2850
+ "rewards/thinking_reward_func": 0.0,
2851
+ "step": 227
2852
+ },
2853
+ {
2854
+ "clip_ratio": 0.020050687453476712,
2855
+ "epoch": 0.1824,
2856
+ "grad_norm": 12.623134353539193,
2857
+ "kl": 229.0390625,
2858
+ "learning_rate": 5e-07,
2859
+ "loss": 0.0382,
2860
+ "step": 228
2861
+ },
2862
+ {
2863
+ "clip_ratio": 0.0,
2864
+ "completion_length": 2303.3203125,
2865
+ "epoch": 0.1832,
2866
+ "grad_norm": 8.985778261923576,
2867
+ "kl": 1521.31640625,
2868
+ "learning_rate": 5e-07,
2869
+ "loss": 0.0609,
2870
+ "reward": 0.34335938887670636,
2871
+ "reward_std": 0.4365329034626484,
2872
+ "rewards/end_of_conversation_reward_func": 0.07187500095460564,
2873
+ "rewards/end_rm_reward_func": 0.271484375,
2874
+ "rewards/length_reward_func": 0.0,
2875
+ "rewards/thinking_reward_func": 0.0,
2876
+ "step": 229
2877
+ },
2878
+ {
2879
+ "clip_ratio": 0.046887944103218615,
2880
+ "epoch": 0.184,
2881
+ "grad_norm": 34.903609321208826,
2882
+ "kl": 1591.25390625,
2883
+ "learning_rate": 5e-07,
2884
+ "loss": 0.0655,
2885
+ "step": 230
2886
+ },
2887
+ {
2888
+ "clip_ratio": 0.0,
2889
+ "completion_length": 2103.6015625,
2890
+ "epoch": 0.1848,
2891
+ "grad_norm": 7.8152371982851045,
2892
+ "kl": 93.3984375,
2893
+ "learning_rate": 5e-07,
2894
+ "loss": 0.021,
2895
+ "reward": 0.41718751774169505,
2896
+ "reward_std": 0.4234715709462762,
2897
+ "rewards/end_of_conversation_reward_func": 0.07734375167638063,
2898
+ "rewards/end_rm_reward_func": 0.33984375,
2899
+ "rewards/length_reward_func": 0.0,
2900
+ "rewards/thinking_reward_func": 0.0,
2901
+ "step": 231
2902
+ },
2903
+ {
2904
+ "clip_ratio": 0.01693671362590976,
2905
+ "epoch": 0.1856,
2906
+ "grad_norm": 15.100433483062815,
2907
+ "kl": 119.0732421875,
2908
+ "learning_rate": 5e-07,
2909
+ "loss": 0.0166,
2910
+ "step": 232
2911
+ },
2912
+ {
2913
+ "clip_ratio": 0.0,
2914
+ "completion_length": 2187.609375,
2915
+ "epoch": 0.1864,
2916
+ "grad_norm": 10.645873330116869,
2917
+ "kl": 176.8994140625,
2918
+ "learning_rate": 5e-07,
2919
+ "loss": 0.0302,
2920
+ "reward": 0.39726564241573215,
2921
+ "reward_std": 0.3991687847301364,
2922
+ "rewards/end_of_conversation_reward_func": 0.07109375053551048,
2923
+ "rewards/end_rm_reward_func": 0.333984375,
2924
+ "rewards/length_reward_func": -0.0078125,
2925
+ "rewards/thinking_reward_func": 0.0,
2926
+ "step": 233
2927
+ },
2928
+ {
2929
+ "clip_ratio": 0.009701315342681482,
2930
+ "epoch": 0.1872,
2931
+ "grad_norm": 9.681021841986935,
2932
+ "kl": 173.751953125,
2933
+ "learning_rate": 5e-07,
2934
+ "loss": 0.0213,
2935
+ "step": 234
2936
+ },
2937
+ {
2938
+ "clip_ratio": 0.0,
2939
+ "completion_length": 2018.2421875,
2940
+ "epoch": 0.188,
2941
+ "grad_norm": 9.837481125291612,
2942
+ "kl": 250.2099609375,
2943
+ "learning_rate": 5e-07,
2944
+ "loss": 0.0135,
2945
+ "reward": 0.3800781453028321,
2946
+ "reward_std": 0.302262753713876,
2947
+ "rewards/end_of_conversation_reward_func": 0.08125000144354999,
2948
+ "rewards/end_rm_reward_func": 0.306640625,
2949
+ "rewards/length_reward_func": -0.0078125,
2950
+ "rewards/thinking_reward_func": 0.0,
2951
+ "step": 235
2952
+ },
2953
+ {
2954
+ "clip_ratio": 0.02462595998076722,
2955
+ "epoch": 0.1888,
2956
+ "grad_norm": 18.237167770716425,
2957
+ "kl": 475.810546875,
2958
+ "learning_rate": 5e-07,
2959
+ "loss": 0.0139,
2960
+ "step": 236
2961
+ },
2962
+ {
2963
+ "clip_ratio": 0.0,
2964
+ "completion_length": 2196.796875,
2965
+ "epoch": 0.1896,
2966
+ "grad_norm": 10.707362677641337,
2967
+ "kl": 2000.958984375,
2968
+ "learning_rate": 5e-07,
2969
+ "loss": 0.0229,
2970
+ "reward": 0.38046876690350473,
2971
+ "reward_std": 0.30730303283780813,
2972
+ "rewards/end_of_conversation_reward_func": 0.07578125095460564,
2973
+ "rewards/end_rm_reward_func": 0.3046875,
2974
+ "rewards/length_reward_func": 0.0,
2975
+ "rewards/thinking_reward_func": 0.0,
2976
+ "step": 237
2977
+ },
2978
+ {
2979
+ "clip_ratio": 0.00941651189350523,
2980
+ "epoch": 0.1904,
2981
+ "grad_norm": 7.341564288985746,
2982
+ "kl": 3464.6708984375,
2983
+ "learning_rate": 5e-07,
2984
+ "loss": 0.0123,
2985
+ "step": 238
2986
+ },
2987
+ {
2988
+ "clip_ratio": 0.0,
2989
+ "completion_length": 1952.6328125,
2990
+ "epoch": 0.1912,
2991
+ "grad_norm": 9.746913854316412,
2992
+ "kl": 106.2119140625,
2993
+ "learning_rate": 5e-07,
2994
+ "loss": 0.0185,
2995
+ "reward": 0.37890626420266926,
2996
+ "reward_std": 0.44265066692605615,
2997
+ "rewards/end_of_conversation_reward_func": 0.07031250128056854,
2998
+ "rewards/end_rm_reward_func": 0.30859375,
2999
+ "rewards/length_reward_func": 0.0,
3000
+ "rewards/thinking_reward_func": 0.0,
3001
+ "step": 239
3002
+ },
3003
+ {
3004
+ "clip_ratio": 0.01394331140909344,
3005
+ "epoch": 0.192,
3006
+ "grad_norm": 10.146789021120865,
3007
+ "kl": 102.3330078125,
3008
+ "learning_rate": 5e-07,
3009
+ "loss": 0.0135,
3010
+ "step": 240
3011
+ }
3012
+ ],
3013
+ "logging_steps": 1,
3014
+ "max_steps": 1250,
3015
+ "num_input_tokens_seen": 0,
3016
+ "num_train_epochs": 1,
3017
+ "save_steps": 10,
3018
+ "stateful_callbacks": {
3019
+ "TrainerControl": {
3020
+ "args": {
3021
+ "should_epoch_stop": false,
3022
+ "should_evaluate": false,
3023
+ "should_log": false,
3024
+ "should_save": true,
3025
+ "should_training_stop": false
3026
+ },
3027
+ "attributes": {}
3028
+ }
3029
+ },
3030
+ "total_flos": 0.0,
3031
+ "train_batch_size": 32,
3032
+ "trial_name": null,
3033
+ "trial_params": null
3034
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6891687f44ecc1193350e947b9566f73161cba7a6ff057e809b1550a9d401e4
3
+ size 7800
vocab.json ADDED
The diff for this file is too large to render. See raw diff