Initial commit
Browse files- .gitattributes +1 -0
- README.md +6 -5
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -1
- a2c-AntBulletEnv-v0/data +33 -29
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +2 -2
- a2c-AntBulletEnv-v0/system_info.txt +7 -7
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -8,16 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: A2C
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 348.33 +/- 73.00
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: AntBulletEnv-v0
|
20 |
type: AntBulletEnv-v0
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **A2C** Agent playing **AntBulletEnv-v0**
|
|
|
8 |
model-index:
|
9 |
- name: A2C
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: AntBulletEnv-v0
|
16 |
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1621.72 +/- 54.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **A2C** Agent playing **AntBulletEnv-v0**
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:221881a8562f22da6fdd687b8edb21d5e609213762e40b7edbe33317ed01e49e
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -1,27 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
23 |
":type:": "<class 'dict'>",
|
24 |
-
":serialized:": "
|
25 |
"log_std_init": -2,
|
26 |
"ortho_init": false,
|
27 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
@@ -33,7 +34,7 @@
|
|
33 |
},
|
34 |
"observation_space": {
|
35 |
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
-
":serialized:": "
|
37 |
"dtype": "float32",
|
38 |
"_shape": [
|
39 |
28
|
@@ -42,11 +43,11 @@
|
|
42 |
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
-
"_np_random":
|
46 |
},
|
47 |
"action_space": {
|
48 |
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
-
":serialized:": "
|
50 |
"dtype": "float32",
|
51 |
"_shape": [
|
52 |
8
|
@@ -55,43 +56,46 @@
|
|
55 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
"bounded_below": "[ True True True True True True True True]",
|
57 |
"bounded_above": "[ True True True True True True True True]",
|
58 |
-
"_np_random":
|
59 |
},
|
60 |
-
"n_envs":
|
61 |
"num_timesteps": 2000000,
|
62 |
"_total_timesteps": 2000000,
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
"learning_rate": 0.00096,
|
68 |
-
"tensorboard_log":
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
-
":serialized:": "
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
-
":serialized:": "
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
-
":serialized:": "
|
|
|
|
|
|
|
|
|
80 |
},
|
81 |
-
"_last_original_obs": null,
|
82 |
"_episode_num": 0,
|
83 |
"use_sde": true,
|
84 |
"sde_sample_freq": -1,
|
85 |
"_current_progress_remaining": 0.0,
|
86 |
"ep_info_buffer": {
|
87 |
":type:": "<class 'collections.deque'>",
|
88 |
-
":serialized:": "
|
89 |
},
|
90 |
"ep_success_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
-
"_n_updates":
|
95 |
"n_steps": 8,
|
96 |
"gamma": 0.99,
|
97 |
"gae_lambda": 0.9,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f52a6080430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f52a60804c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f52a6080550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f52a60805e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f52a6080670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f52a6080700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f52a6080790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f52a6080820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f52a60808b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f52a6080940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f52a60809d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f52a6080a60>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f52a6081900>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
"log_std_init": -2,
|
27 |
"ortho_init": false,
|
28 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
|
|
34 |
},
|
35 |
"observation_space": {
|
36 |
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
"dtype": "float32",
|
39 |
"_shape": [
|
40 |
28
|
|
|
43 |
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
},
|
48 |
"action_space": {
|
49 |
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
"dtype": "float32",
|
52 |
"_shape": [
|
53 |
8
|
|
|
56 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
"bounded_below": "[ True True True True True True True True]",
|
58 |
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
},
|
61 |
+
"n_envs": 4,
|
62 |
"num_timesteps": 2000000,
|
63 |
"_total_timesteps": 2000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1678693541646196832,
|
68 |
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGTsTT54jiW/c2XhPsOyrj+Ih32//aVwvSEsAb+6pra+lZkpvzxLlD+vHBK+BXPyPx3Qj79ydKI9nRE4P4zZkD6WjRw/Z1Omv1iYEr8Ia2I+B1GUv2I8Kzyic+A/E3cKvWFxuL9Q1+M+siv3PiD9gL/dkDY/7RSlv1t3eL5H4J8/Sunsvv8ECsB1Yta+qN3Gv1m1Tz/IoR7AepEQQFawOL7xL6O/YjbWPBd+BD9fy2S/c5SFv3J9OT/3gpA/9NrOPoJAKb0cajS/PSCMP2UEoT7JqDE/UNfjPoWSBMAg/YC/U9cIO9+ex76pbBI/lJ18P7nrwL6cQjXAjmyIPfk1hb+Tpvs+Xifcv82jU76ojWfAMBmjv2ehHD0QZ7k+erDBvSBBBb6GGKQ/IQRtPyxUE8DJlTy/fF2Zv89+4D8ILxu9YXG4v1DX4z6yK/c+IP2Av4J3sD+P0YW/HQu4PTRKsz9GpWG/d8oCP1MATb8DU7S/jse+P/Paqb3m5QM/vapCPZnkpr8QK7A+0dw4PzBC8Lw1PD2/R4iIvm/LDb6pfk4/i8LSPr+Bdz9zewM/L+SVv8moMT/O0Q/Asiv3PiD9gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADpFEQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT8kNuwAAAAAHE+2/AAAAADasKr0AAAAAmsTdPwAAAAAWXNs9AAAAAF2I2z8AAAAA5NqDvQAAAACPW/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BKItgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC/w+z0AAAAA23bqvwAAAAA7tUq6AAAAAFX29z8AAAAArIzXvQAAAABRevU/AAAAAPeiYb0AAAAA5Q7evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK+UPrEAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5Xww+AAAAANHT7r8AAAAAEyCVPQAAAAAL6vc/AAAAAGjfYr0AAAAAic3fPwAAAACn/PC9AAAAAAMS5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEv/40AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAynyGPQAAAAD8XOS/AAAAAH2epr0AAAAAgo72PwAAAACTfDA9AAAAAI2K6T8AAAAABFoBvgAAAAA2QfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
|
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxGs1ZTyayMAWyUTegDjAF0lEdArUJKQo1DSnV9lChoBkdAm0fdEw35vmgHTegDaAhHQK1DgUY8+zN1fZQoaAZHQJwHl1zQu29oB03oA2gIR0CtRN6jFhoedX2UKGgGR0CcAn7V8Ti9aAdN6ANoCEdArUdFkFwDNnV9lChoBkdAmZZfRqoIfWgHTegDaAhHQK1SOCr92ox1fZQoaAZHQJcAhoRIz31oB03oA2gIR0CtVDMDW9UTdX2UKGgGR0CY7vj5bhWHaAdN6ANoCEdArVXRQFcIJXV9lChoBkdAmEqodMj/uWgHTegDaAhHQK1YV9G7SRd1fZQoaAZHQJOPQzl90A9oB03oA2gIR0CtY/BE0BOpdX2UKGgGR0CMAhGGVRk3aAdN6ANoCEdArWUlGTcIq3V9lChoBkdAka6cJtzjm2gHTegDaAhHQK1mmJaaCtl1fZQoaAZHQJTrYoOQQtloB03oA2gIR0CtaSVLBbfQdX2UKGgGR0CXnQ+XJHRUaAdN6ANoCEdArXTUtqYZ23V9lChoBkdAlVvuEug6EWgHTegDaAhHQK12DUSZjQR1fZQoaAZHQJNrTDbah6BoB03oA2gIR0Ctd4tEPUaydX2UKGgGR0CWXUkpZwGXaAdN6ANoCEdArXn9jRUm2XV9lChoBkdAmJoc7yQPqmgHTegDaAhHQK2BjezlcQl1fZQoaAZHQJgjLOoo/iZoB03oA2gIR0CtgsUD+zdDdX2UKGgGR0CRkbGiYb84aAdN6ANoCEdArYQVrsSkCXV9lChoBkdAlzATPa+N+GgHTegDaAhHQK2GdNjbzsh1fZQoaAZHQJv1Zb3XZoRoB03oA2gIR0CtkYhoEjgRdX2UKGgGR0Ca5lVTJhfCaAdN6ANoCEdArZN/CXQdCHV9lChoBkdAlw4P0AcT8GgHTegDaAhHQK2VE57PY4B1fZQoaAZHQJoMztQbdadoB03oA2gIR0Ctl3Z7PY4AdX2UKGgGR0CZILWYF7laaAdN6ANoCEdArZ8S0QbuMXV9lChoBkdAmGWWY4Qz12gHTegDaAhHQK2gUAf+0gN1fZQoaAZHQJqKjiR4hU1oB03oA2gIR0CtoaN1yNn5dX2UKGgGR0CXEDar3j+8aAdN6ANoCEdAraQVXNke63V9lChoBkdAnDFlkQPI4mgHTegDaAhHQK2txUEPlMh1fZQoaAZHQJMx6G0u14RoB03oA2gIR0Ctr8okJKJ3dX2UKGgGR0CWYUIznA6/aAdN6ANoCEdArbIeuDBdlnV9lChoBkdAlu2P8AJb+2gHTegDaAhHQK21SAmzByl1fZQoaAZHQJeD0A0bcXZoB03oA2gIR0CtvPkZBLPEdX2UKGgGR0CX8ZV/+bVjaAdN6ANoCEdArb4uaH9FWnV9lChoBkdAlumPIKc/dWgHTegDaAhHQK2/o/SH/Ll1fZQoaAZHQJTcx8hLXcxoB03oA2gIR0CtwjcJMQEqdX2UKGgGR0CT4e7qIJqqaAdN6ANoCEdArcr9CzC1qnV9lChoBkdAmU78Q/X5FmgHTegDaAhHQK3M3Xlr/Kh1fZQoaAZHQJUyKY8dPtVoB03oA2gIR0CtzyXeN1hcdX2UKGgGR0CXrc2RaHKwaAdN6ANoCEdArdMZdyDIzXV9lChoBkdAlmFn/HYHxGgHTegDaAhHQK3fD4i5d4V1fZQoaAZHQJsEO/cnE2poB03oA2gIR0Ct4EHNPgvUdX2UKGgGR0CTW1/giu+zaAdN6ANoCEdAreGW36Q/5nV9lChoBkdAl4eN9H+ZPWgHTegDaAhHQK3kB0EHMU11fZQoaAZHQJFrYeeWfK9oB03oA2gIR0Ct7bfjCHh1dX2UKGgGR0CRncDQJHAiaAdN6ANoCEdAre/JH5Jsf3V9lChoBkdAmBg8NYr8SGgHTegDaAhHQK3yLaoMrmR1fZQoaAZHQJRBoco6S1VoB03oA2gIR0Ct9SVYhdMTdX2UKGgGR0CRZOjnFHawaAdN6ANoCEdArfytKRMewXV9lChoBkdAkihaUNayKWgHTegDaAhHQK394DQJHAh1fZQoaAZHQJTQrXoTwlVoB03oA2gIR0Ct/0JosZpBdX2UKGgGR0CWQBdM0xdqaAdN6ANoCEdArgGnMhX8wnV9lChoBkdAlZF24ZuQ62gHTegDaAhHQK4KVuYQarF1fZQoaAZHQI3Y9x2jfvZoB03oA2gIR0CuDDQRf4RFdX2UKGgGR0CYDykaMrEtaAdN6ANoCEdArg5ymfoRqXV9lChoBkdAly3bTtsvZmgHTegDaAhHQK4SZMnJDE51fZQoaAZHQJXpeQq7ROVoB03oA2gIR0CuGgy+g13udX2UKGgGR0CX7EHZK3/haAdN6ANoCEdArhs7kOqeb3V9lChoBkdAmdVv5Lytm2gHTegDaAhHQK4clqfOD8N1fZQoaAZHQJj25whnrY5oB03oA2gIR0CuHwXyy2QXdX2UKGgGR0CbPN77bcoIaAdN6ANoCEdAriaE/dIoVnV9lChoBkdAmsy5Y9xIa2gHTegDaAhHQK4oMDf3vhJ1fZQoaAZHQJnXzpJPIn1oB03oA2gIR0CuKjyAH3UQdX2UKGgGR0Cbewf642CNaAdN6ANoCEdAri4iquKXOXV9lChoBkdAmgJfb9If82gHTegDaAhHQK43dMj/uLJ1fZQoaAZHQJpGWY5T6zpoB03oA2gIR0CuOLEqMFUydX2UKGgGR0CbMs8wYcebaAdN6ANoCEdArjoPg1m8NHV9lChoBkdAmtaqVyFPBWgHTegDaAhHQK48hYOlO451fZQoaAZHQJowBCw8nu1oB03oA2gIR0CuREZr56+ndX2UKGgGR0Cbhdbuc+aCaAdN6ANoCEdArkV8XtShrXV9lChoBkdAm0f55Rjz7WgHTegDaAhHQK5G9peNT991fZQoaAZHQJqjbMeOn2toB03oA2gIR0CuSp1MEidKdX2UKGgGR0CYIdF2mpEQaAdN6ANoCEdArlf2DOC5E3V9lChoBkdAnZaTqOcUd2gHTegDaAhHQK5Z7iZOSGJ1fZQoaAZHQJtRNaIN3GJoB03oA2gIR0CuXCKLsKLLdX2UKGgGR0CbAdd5IH1OaAdN6ANoCEdArl6ZSP2f03V9lChoBkdAnT+wdGRV62gHTegDaAhHQK5mKcG1QZZ1fZQoaAZHQJl6mPtD2J1oB03oA2gIR0CuZ14XfqHHdX2UKGgGR0CWZte+Eh7maAdN6ANoCEdArmksoF3Y+XV9lChoBkdAlcz8QumJnGgHTegDaAhHQK5s7gZ0jkd1fZQoaAZHQJYpfzBhx5toB03oA2gIR0CudxjbSJCTdX2UKGgGR0CXNkPn0TURaAdN6ANoCEdArnhTh73PA3V9lChoBkdAlywVWjoIOmgHTegDaAhHQK55rPQfIS11fZQoaAZHQJWdUDB/I81oB03oA2gIR0CufBzpX6qLdX2UKGgGR0CYpb2FnIyTaAdN6ANoCEdAroOraPCEYnV9lChoBkdAmtOLAxi5NGgHTegDaAhHQK6E2KO1fE51fZQoaAZHQJpWb69CeEtoB03oA2gIR0CuhipHI6sAdX2UKGgGR0CYTDS+g13uaAdN6ANoCEdArokc0FbFCXV9lChoBkdAmTUoBBAv+WgHTegDaAhHQK6US/0NBnl1fZQoaAZHQJpWI0k4WDZoB03oA2gIR0CulXM2eg+RdX2UKGgGR0CafUVZLZi/aAdN6ANoCEdArpa9ocrAg3V9lChoBkdAmt9tWZJCjWgHTegDaAhHQK6ZEso2GZh1fZQoaAZHQJu/sK8cuJ1oB03oA2gIR0CuoH7QTmGNdX2UKGgGR0Cd6zaIvalDaAdN6ANoCEdArqG3MUypJnV9lChoBkdAnMDwfQrtmmgHTegDaAhHQK6jD6LwWnF1fZQoaAZHQJ1n6uDBdldoB03oA2gIR0CupWrUCq6wdX2UKGgGR0CdVv9pRGc4aAdN6ANoCEdArrCTB9Cu2nV9lChoBkdAmUZLN0NjLGgHTegDaAhHQK6ykcuJ1q51fZQoaAZHQJpPf/3nIQxoB03oA2gIR0Cus/W912aEdX2UKGgGR0CdGecYIjW1aAdN6ANoCEdArrZmAwwj+3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
},
|
98 |
+
"_n_updates": 62500,
|
99 |
"n_steps": 8,
|
100 |
"gamma": 0.99,
|
101 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bc870bff15df0c311c4861d2539c2f50307d22e721f8e620995cb49e5090a8f
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce2c637570c82dba8866540758e9a6d1e8f5d54ca8c7a350bdbfccc1085d6352
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.
|
2 |
-
Python: 3.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa739f718c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa739f71950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa739f719e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa739f71a70>", "_build": "<function ActorCriticPolicy._build at 0x7fa739f71b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fa739f71b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa739f71c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa739f71cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa739f71d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa739f71dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa739f71e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa739f465a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVGg0AAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOowFc3RhdGWUfZQojANrZXmUaBJoFEsAhZRoFoeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAB6hvEnOwZHAEL1oQMcC+ThLKxmHY6it7Qfd2VHJv8nxsBb/i9gnu8Rni5hm0+2XpwDf+Fj8lQkQxwlD0xy1xlFO+Qn63v8WUUlgd5e0GZY3LaKnY7gAOI5cINyPsdpQv303D9bwDl1A6OnWhaJTJm7sZADd756I4H1MBlzr5NqMwxKZX1sZfm9aGH0inLO2S3nA3JNhwsm8tmFamf1jw6dlm8uAXixmdP1TS7Zd36Wx7u+JfTYUDkppZpcIja/uqYn3QMDobeQFV5EC8zLk1zBLQKm0bC6eYJWEmbQugT24LrEC96jNZemOL18jhbP//AqiOFn9IHUmbxuIUIsuOxFjllQ7rUi6LnCsheV/CaI/j05CT8y59nv/QmofbE5R5r4xfYWOEsRwnerq0tTIeZHII4lu64yXN0UqM7wCs8E3ahMXTKWPTIV2s2O4GnK+RB/5zCy7wkvMFCUqsmVsnsjcq28q0stqE85GDug0NLFXJ6sf9BqNbANQjoaX71mQ4/On9ghMXeKIzkQ3f0ijymBswfDE5EUoO/uJjYomf4ezFSS7KXsU10MT0u+wzKC8h//m23U0AuBYNcJEwiK8gnYlgjvbnvbPkFzGPsRwocqDRwUDCwDGe+K2PinxUFRDuRfk3qxAbvGIsDmhK90+UU8dkFg9ctV5pErgDZAv6e/STN1s6W/Li18jhLKLHkd6HbfziNxPVFe+nDQlHZt5xqglCgYbkToxsPpCTrgaOKadOhA6d2/vsMfMbCryHEFNppUT5lNLWO5WLw7NSP/ZOaub0oulUSE9zU5tBBesQqC8irVqJsEwd8PDIUy7XUP1kiEy3sd4/mORFocRRzSJnPxNaN96+BpcyFQLobQiSIMDX+Rhs/Qmuo7UqVff0850gqp8ZUVjfWoAGOjwHq7WPslA8tRunSnDuqWpt8odOj9kdye8/7M4tM3d0fDNIVmPk5lGaB7SxIWNw3S4ytsARyDHGr2nVZB4JHSRVhol1dpqp7Hmi1zOO6Wp5A8qFPvOa2T6vtuE9PDW7JjQwirNJUnUSbLyb/UlSWJ9XeMrB+32tE39mGyQDn3dY/VgUrowuJbmRLatTDD7EVK8v352TBxIT7ucn3bOwdADh3YQO0ewAeqZHq7zvVfAIowjN0PvCNkim2qbGCOX2BomgwCFG8fLVyn3N/DCPsFXwCS0Ya2FgrYOcoQEYo/HHUQU1NbLF5W4fjoPZVJk85izpL+ykFHZ7bMyHwySxJ85/5qkEgI/u2H2GfAy1S2JErCnaJgkPIYCMn/ULU2bys6z1w9RK2r0i6ILlbtKzFsAQYWNHIb2P1V32NUQFMhXCyIA6F0X+dMWBhDVpRKhEKCoqNdVRHOMGeyHb6N4IiLvhirxKRgudNYnGfHcG0tBi3rCvtrEKe4wDS/3wDM1Fd68GwpcwHCqNKlSDQyw3vlH1qanMqjVxjAyTirBF8Lvxuhb/jbDG+pZyvTJLpVUe+j9y+DZlfFi6llnnt9IH52Z2llm3FX4XktaKnpSQpj/iLkOcFco+6+6bztDuQzpYZQkDOGG8z48hrtDQFDaku8WPs8nFyzSQfVP/kVDAKD2YySfQtrMndTnwtH2Q3u3rdi2Bdx3ACxEXJLF2J15yVTY+dWB8Eiv4mfqKaKcW622e770XooqbtW6k8O3ui4/bz3yGRaGr28eFlyCiL8O5qIO97KSsCyYH/rKOV7JuW9oK+Ypks2IhVxqDQA6mil+GQJsnS6/9Wr+7r0zSn44VL46wsCr16V7Hrgn1tv9y1jEXM3SYmegr4RMcf1SdYwwoScnjVoo8r0DRx4t3Mus7oEjk5veM10jYJHPjLM36JSpFhSWy4G763W0dQipD2rqZvFhT96FXT/WOMwtu4kUTV7wtFQLfKVeW7n3cppVubnY399mEwSL8NNVEHUnWBmYi5lZddlPAgCwllKFaL3RboTjzKiTi0Dyf20EfOXSLIKnfEVZMHlZoGX8kJxnc5YO0Ju5nrQOh3tUfV+PSSEWHoW7btxzfwc+tzsK2vGWFqz4XqOYoT2RsJM1KQ1I4u0VnNjd9At9ZF/NsuUT9ZTt2VBqa3XRnk06eJSrHW4tBQRlGJ00zDifRX++LwR7wfkARsW6aj1WzMpxdXp+0z1AQaOOcJTnYK3oXKkh8WMpdI6FvaDhHiCBh6iDDgah0OZx4/f5n5noM5gZql45MDR2jkGuI3ioGZSpsNO6ZuJR/lRhR4BN7Ei4wryDQvuBMjCGb2tm8yL15BHB//lbYrd6/g7J8C7TCrcLtH6r+/+ajnuZ9zpQS9/Vd+0KmsvVzKnSu7S/dW8nHo3GL8/W4jXkvFOSHYawvC3jWcCW5vwDqQMQn2mPMfPoMLmr6LRaqhVP7//UCBcvezIEYNC+sb4pwef9QjChgL6NuM396SRi35Y6syxN/+0vHm1hIz19sqfRVKgksh/58RutY2HVbjH88Tp+KDynkbGpSfqv5gfT+PhxwdH/eicIWYtFWjhpNGC5K6RIPUlt/KU5njNroeNiIEuilS+XDcJncjtaw+Pb1BJs9tJ4LHfSOfyDyPcehy6GThTNYCuuQiQRC5GUsUepU3n7Zu+B5kGV509z7TZmRWJoYOjDa7NUh7hgV44L5N99dRmZLg0rqrGJhY5nXzpAYDC3UKsL5xkYncXjed3AmxzwAo1aABZZ3UHDsIiGkgs+ccnky9W5JCeTqcWGRIQKwHamTFReSMHpfZkqca7QdE14lYnOS0TqvVcwZN4gBFsYMzzeXj3A9S6C1J3M1zskVFnw5hTbmkjU3rBlKeiah1gpqYsjHQ8mVz0LCXnlhsI3ID90gWyzrxSsO4ESwDdGZesNIPNcRRrbiJTi0lpmKVBzcyJs962TcKeN9HE8E7mROf0OwvGY0exegNKSgANxFQxLZSiuZxzThY7iJftEa1SMkr3NxM1xncjirk1j6XFR9f9nJqThgMNdqvLAwjQfiTW4PoSUnndVvriMPgvVXOpwOYk8tcaFMa7FMrZOoNccV55KzwS707eEqWvNfo9M4ntCU0VNCuqElo2uIQsUJRulatW3LDgT0S/AE9k/Qe79mr+ufoHp5CIJ94vOosj3ZgDqE+1xeqmUY+eyd6ycDSMjKME+wNFOpJTx1oqdeaBUgBclIDl9svsbcRFdQipvLEw9zTApK0rLy7rZaXaUIOyFGmNUW0EaXgLTXdeq4lupCBTUV+WM/cP0UXY4AO0rZHm8hUAEJeiq/HBni0RHPnuTEf8YpiKZXlLkNYYJ0xap2RGk/OuhInGUIiaX8c4QwB+posuOTQ5Tivd14mqvJbEze9+r8O7xYJR0lGKMA3Bvc5RLSHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAABoT5soMhcP5vkgfShS2F1AZYFP1ahMU5EO2ngMfgyDLvJnvm5K64uF+2TwIhZqGTLzt/wJp3AqLo0VLD1o+seEXyW8Qd3kw66Qvid58XWVxeWOGD6LG/ilks4kWvAiaRPBeiFg0qZxxFTCq965/ycdxMpB97juBp8yE4J1iRoX/8k7PnVyRVTEnGDyA350R70P6u2uq0wGOT5HNxN2hTYgyAgQ9GRH5ZPtHn780/KUD1cDdK9wIow5vcsYitZU/iGbzgpigVEBeCYScCAnt78t0Wq2LlZ+UfQwDQGJU8oF8kWvabtO5/uVPpoz+qdS/ripZ89OHDHa5aZmP53OBSGXPjVA84XZZ10KSCaQRPT6JvJ67Klr4ynq1BR9oVttpRS+MxtSKAuk5OoZBGXhEL1KxaYIS4PL8FvBA3waN/SDBQEiLzeRFAahYMlGMO95zU6jCQkuf0Gmi4frQykSuG5k5xO1KDsOFQL/MadcaSAiUGdxaZWAd8ccIBA2EIqxegiFYaZ73bpJbYGC0HDMs0wUq/BB+qaKX58Up9DyljUjkEPw1iaJmhgKNnPpdedrl+lrmZNrQ2Wf9gQjAsCdaHsDITz1rmzMCGf8vOwUR++QN+ifxxVwYc+ACJt2vKdGX8d+jOs2/eQhJ2fgN2IjK+kcfqMwGohKLC8gWGfl4eqcEZyXP8Cs/h2E66IiGFySzSLuXW+O8BAA2KyBBe48W4IaARbNu0sYkgYkNJfILLJw2ahM4n56MhK3buDlBQJU+iAcU0sa9LeoWwuGJQwpuA1I4WHnrbivunQf+NBu/pWGloHuE8OasO1hz8pyGcn11qJsm26OFg0765fafGgdz7sM2awFkQ3gyqi6zPn+kwaK7BGwGv/0iVS51WGWS75ZqndKezKO1axZfgdjwsA4tZfV6+i8bZBtShAl+5nvjstl6kRhQs6Y5QG1DZ1/w8MoyIEABiy9qV90Z/VilGvADSMCgRAtlJCQ5w1XkTwbzrHBWza5hJoEevsGC/0mwFrjj9eMYqCLCsWE6PhqlsSe9EFv7ecQ76mbPzJy162Lr8nFEVlG1twQVjrBTs0/uFLQb50vpxCms7m2G6rPAlN+3TURIX/DRTpOoUchu92Fdh7IA9vdSiXY/lR52DmJ6YsR0C7vSxAdAp5m5GiL94h4lxm1C6pgIUVNYD7/SYMf6/M+g8A5rReCxUEkyg6aqBKAwXvREjjYyBWN2qJvbgC/jqQRqj4Yk9qwZF7ArDcXlFriaCQAlnZqWuHMuYw0Q14dIxmSG1U4BcjkQ6wKVWAdWpKFQfu5mZCBtOn6/15od3QDSENITCtFPXEjRIUrY0fchpzvCStuFUTAlykHTRd1ESt01Wzi6Jg+tqC1LlKYuFkBw07mO6cawr288EvP/+7s2s1NofrClMyoZ2HEVKkrFajYOcr/rZkRO2XUpr2MjcQWkXtSDuUAEI7LUJrFUhffkwQWYIpYkx4m0v331iqn/7um080mt6IHvgr/i8jgzf0yUJKPGs448C8diQOceHbBFSVn/Ry6z/yxbfl3jawyqGHrZR9rIqikmiJma4iPPh2ufRdpHTDhrK2N2TSr3TXq/ISfuFi4fV44fW6yvZcgaV9/3gQZa8bALamVMrUkIMKUztOTNopFgObkzRIyzqRj7wlk8AIUqbXXxyB6jUI++qT7b2a9xhQxruIoI6S+jyLbuyWmhrttazaywb1I0n6TVWSsC9mA8qke1ZAaR2J9kIU/UsD7ZOY9/pcszYu7Ty+nSo9gUdNgePYE8bvoIFV/8WuxOEyAWgNoNsfEP0644GAlxu+3qNi+9yYFWx64XOjz3LoOpRGcr3SedEZlbF19GHW9mjAi2GSz80elRaiKq5spWJYbtXgT7SJp5WQdWZ+QxB9ArUg5Mq7wiOVKkgQ7wLHlB3QH+VQzz+CCef9zFsljz/88GUCSXHS4NvfcDf3zOkInJI9eEcZLF1bZD2Tv36UuuR7II2jivBipaR4pHflr66NCL8xqI23Nn+TditzocV5I0MBxmex0woBt105WkrdhP5QuF1r7wCZnPySI+FDvL9oMi0WESmwsZQX7FiNaN0tfDa0jt/go/GFivYAgeorcdpbTrLVBuut2fJ4zr4Qaig9T7Xc2CchoJvCojrRMzjqd8cNbOD/zEpVz2CNTkOyGMJRR2kJvD1lRGDAwlgXdUyLIbzLyCfxgan3Jt+RlDWT4Ei1wGqWXpItJmVox45OcI96LsyiMcM9AeF1VHAwupcSOxDI7u99ROuaQx80wYNjMMUIk8szInkRo3YDhUNDbocxuoH3IFNjjA0YSDDRdAkrbGtsIH4w8vq526dvCSbQo/cmiJFC0WvTLMkk87IoLamN8at3qIraRDijw/ZWgCqzHbqpMFwXpF1QiHyv2H+cOvxQqNL18ah4lijvU+U4LvkXW3BIO59+F8E936olqk+rM1WAvPYoVSbtQAoDepcim6zxTTGk+oT1J2D83lIalpiadw8Hbbgd2FQNmg70A5ym1xdjBWptn8CcRzPsWg4r6WwoyMYkLaFRREb8XZXAwZZo4Xaoa7uPpJkAEgipgy0/gOmHQIkACOzu0UgOEpc5fja9P64wTXKRWF1tJbO6gWPyWcXaEUMY3zPuva2QIpjuTYBfBPfe/NtzCMRbHZVN04J3jtSxFzPfQGLtZay3vjeDTlJ0GEQ1tTPtIOpFrhHWntfyXHr9UvYvyssc1Tef2MoS9cEkMl1si/OhgRgZFbjFEPlx3rtRqs0PKcLNrwRi3XmgOQR+NxfUT9MybC5Fw3SFxWBXrw/do3LrmIRaRBkdQaaHg/TNSWARjSTXaIeTCKmBlk4jNF6v/GQzF9oGtgpW4Y2Lt/lGXuVT/dsIVCUpwe5vPosP9PvxSEMsd976arTxKDoJFag5CZYqLFLeh8jBowz65v0wEsQ6zG5vkSCO2zt8F1u6cjuuV73/QXrnhOVdsFLbZmXBuykMbcy7yZJrzg+qngnRdD+Y9m1bHaDJzEQDgJM6GU7iRHweNuE1dbt9CCwebEKahQRJQdjLzcQmgHxAHc7O4fYbpqUE7hdfNvGo8KwhrKgr9AztNxUCCVpOVE5cGwhH9IuPCWp0mHlayLldO7HqM7esgVDqrZp3N3U/9B0RGqQmWswFvwQqf4vTh7XPHxF1S5To832/ylw6mVGJTlPpZR2G4oCqEuBs7zj2VHZAUbGn5WBgJYKZB3W7fPEFXsPtZTcdDxtczLglaYL+FVNNgdQCAXFXmgLMLKzaTxEB4ZbzFN/476fqIKbfesiVOxDBxDsOapWvJIf46miCKpx+dTmjR28eUdJRijANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660576389.5897238, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV+gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNwPZ+FvoAXvz0Y4n4/Wi7bO6kLm7vHems7WrJLPuKsar5bjoA/6ZWWPdeSgD9Jxc679E9zP14bQzz7/Ys/1RliPK0DgD8Pyt+4w161P3B+CLsN53+/Klz9O2qecr+pMv47AACAPwAAgD8AAIA/AACAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP88ZUDMeOn6MAWyUSxSMAXSUR0C2JCfK6nR+dX2UKGgGRz+4nRb8m8dxaAdLFGgIR0C2JDVA/s3RdX2UKGgGR7/ecGC7K7qZaAdLFGgIR0C2JEWFi8WcdX2UKGgGR7/xw7xNIsiCaAdLFWgIR0C2JFM052hadX2UKGgGR7/ge7UXpGF0aAdLFWgIR0C2JGNC3PRidX2UKGgGRz/wgoLG7z06aAdLF2gIR0C2JHT9S/CZdX2UKGgGRz+0STQmeDnOaAdLFWgIR0C2JIQUUO/ddX2UKGgGRz/hFSCOFQEZaAdLFWgIR0C2JJNDQZ4wdX2UKGgGRz/ew2ETQE6laAdLFWgIR0C2JKJztCzDdX2UKGgGR7+iKgqVhTfjaAdLFWgIR0C2JLC8WbgCdX2UKGgGRz/p8lgMMI/raAdLGGgIR0C2JMGZmZmadX2UKGgGR0AJgfSx7iQ1aAdLImgIR0C2JNnQla8pdX2UKGgGRz/pUeEIw/PgaAdLFWgIR0C2JOl+Zw4sdX2UKGgGRz/t0Mw1zhgmaAdLFWgIR0C2JPiV8kUsdX2UKGgGR7+rRF7Uoa1kaAdLFWgIR0C2JQZuMuOCdX2UKGgGRz/N1fVqesgdaAdLFWgIR0C2JRWw/xDtdX2UKGgGR0AVZ/H5rP+oaAdLLmgIR0C2JTb3TNMXdX2UKGgGRz/BFgDzRQaaaAdLFWgIR0C2JUXI+4b0dX2UKGgGR0AxjeC04R29aAdLZWgIR0C2JZJgPVd5dX2UKGgGR0Ad95+pfhMraAdLNGgIR0C2Jbeg13t8dX2UKGgGRz/coBaLXL/0aAdLFWgIR0C2JceMERradX2UKGgGRz/kNC7btZ3caAdLFWgIR0C2Jdc6eXiSdX2UKGgGRz/AVnEl3QlbaAdLFWgIR0C2JeTtXxOMdX2UKGgGRz/x33YcvM8paAdLFWgIR0C2JfRBRhttdX2UKGgGRz/lixu89Oh1aAdLFWgIR0C2JgXU2DQJdX2UKGgGRz/0fhl18stkaAdLFWgIR0C2JhP5DZ13dX2UKGgGR7/IBH09QoCuaAdLFGgIR0C2JiKRU3n7dX2UKGgGRz/sA62fChvjaAdLFGgIR0C2JjAb+98JdX2UKGgGRz+SzLOiWVu8aAdLFGgIR0C2Jj6oESuhdX2UKGgGR0AX4U1yeZogaAdLLWgIR0C2JmAK0D2bdX2UKGgGR0AD9EAo5PuYaAdLLmgIR0C2JoHpbD/EdX2UKGgGR7+/Ilt0mtyQaAdLFGgIR0C2JpGOU+s6dX2UKGgGR0AsETzND+iraAdLfWgIR0C2Ju965XlsdX2UKGgGR0BMH0k4WDYiaAdNOwFoCEdAtifcchkiEHV9lChoBkdAIGAxBVuJlGgHS0poCEdAtigSqebut3V9lChoBkdAbToTgVGkOGgHTegDaAhHQLYrCewLVnV1fZQoaAZHQHOhBqCYkVxoB03oA2gIR0C2Lf2KMvRJdX2UKGgGR0B0g8ovzvqkaAdN6ANoCEdAtjDu23KB/nV9lChoBkdAY0uhzNliB2gHTegDaAhHQLYzzNt65Xl1fZQoaAZHQHiYhcRlHz9oB03oA2gIR0C2NrvL9uP4dX2UKGgGR0BmMOmWMS9NaAdN6ANoCEdAtjmYoTfzjHV9lChoBkfAStSMtK7I1mgHTegDaAhHQLY8b8QZn+R1fZQoaAZHQHcefU4JeE9oB03oA2gIR0C2P1zv/io9dX2UKGgGR0B6riV2Rq46aAdN6ANoCEdAtkJLpt78enV9lChoBkfARQm69TP0I2gHTegDaAhHQLZFJVMmF8J1fZQoaAZHQHOnnsLORkpoB03oA2gIR0C2SAiIgvDhdX2UKGgGR0B3iaR1X/5taAdN6ANoCEdAtkrlw1ivxHV9lChoBkdAUVZvl2eQMmgHTegDaAhHQLZNvRlpXZJ1fZQoaAZHQICN2lQ/HHZoB03oA2gIR0C2UKA8r7O3dX2UKGgGR0Bmyus3hn8LaAdN6ANoCEdAtlN/MJQcgnV9lChoBkdAe891He7+UGgHTegDaAhHQLZWXXSBshx1fZQoaAZHQGscLtVrAQBoB03oA2gIR0C2WTqjFhoedX2UKGgGR0B+zYpTdcjaaAdN6ANoCEdAtlwlfsu3+nV9lChoBkdAgYs7LdN34mgHTegDaAhHQLZfCdxyXD51fZQoaAZHQHHi4c/+sHVoB03oA2gIR0C2YgNg8bJfdX2UKGgGR0B6Ji2gFotdaAdN6ANoCEdAtmTvwPRRdnV9lChoBkdAZobRqGlANWgHTegDaAhHQLZnxy0KJEZ1fZQoaAZHQGaZ1YQrc0toB03oA2gIR0C2aqNHtnf3dX2UKGgGR0BsNh1A7gbZaAdN6ANoCEdAtm2If9xZMnV9lChoBkdAaicrSVnmJWgHTegDaAhHQLZwdCmMwUR1fZQoaAZHQHDR03sHB1toB03oA2gIR0C2c2kRJ2+xdX2UKGgGR0Bk3yEnLJS0aAdN6ANoCEdAtnZPhKlHjXV9lChoBkdATHQ2AG0NSmgHTegDaAhHQLZ5LrhR64V1fZQoaAZHQGSn7nX/YJ5oB03CA2gIR0C2e+r0aqCIdX2UKGgGR0BiVekFfReDaAdN6ANoCEdAtn7JwKjSHHV9lChoBkdARctvsJIDo2gHTecBaAhHQLaALCLdepp1fZQoaAZHQGHjmgBcRlJoB03oA2gIR0C2gxe3lS0jdX2UKGgGR0BXng1vVEuyaAdN6ANoCEdAtoX5eJHiFXV9lChoBkdAa8fITXarWGgHTegDaAhHQLaI5SqEOAl1fZQoaAZHQEv9n9Nvfj1oB03oA2gIR0C2i70GRmsedX2UKGgGR8BD0Jj+aScLaAdN6ANoCEdAto6X0Dlo13V9lChoBkdARYSjesPrfWgHTbkBaAhHQLaP2T987ZF1fZQoaAZHQHGMYPPLPldoB03oA2gIR0C2krMRpUPydX2UKGgGR0BIX021lXijaAdN6ANoCEdAtpWO6Ymb9nV9lChoBkdANW2GucMEzWgHTegDaAhHQLaYdYEnssx1fZQoaAZHQGRexoZhrnFoB03oA2gIR0C2m1bkOqecdX2UKGgGR0BZkJAUtZmqaAdN6ANoCEdAtp49xn3+M3V9lChoBkdATExyU9pyqGgHTegDaAhHQLahGRlYlpp1fZQoaAZHQHj1wfMfRu1oB03oA2gIR0C2o/4KpkwwdX2UKGgGR8Amlswco6S1aAdN6ANoCEdAtqbcXwb2lHV9lChoBkdAdrr2Rq46O2gHTegDaAhHQLapvbWVeKN1fZQoaAZHQH1XZBX0XgtoB03oA2gIR0C2rKYLCvX9dX2UKGgGR0B1dK6unuRcaAdN6ANoCEdAtq+Rb1RLsnV9lChoBkfAQHfWtlqagGgHTVoCaAhHQLaxR3974SJ1fZQoaAZHQHukAYpDu0FoB03oA2gIR0C2tC+UQkHEdX2UKGgGR0ByrLdSEUTMaAdN6ANoCEdAtrcfJr+HanV9lChoBkdAR462Dxsl9mgHTegDaAhHQLa5+WuoxYd1fZQoaAZHQGdDxMewLVpoB03AAmgIR0C2u/4q5LAYdX2UKGgGR0Bz8a4pc5bRaAdN6ANoCEdAtr7ofbKzRnV9lChoBkdAd3SONYKYzGgHTegDaAhHQLbBzgSeyzJ1fZQoaAZHQHXpKsdT5whoB03oA2gIR0C2xLHi704BdX2UKGgGR0B5HU/iYLLIaAdN6ANoCEdAtseUONHYpXV9lChoBkdAc4ZI3R5TqGgHTegDaAhHQLbKelar3kB1fZQoaAZHQG1wL2YfGMpoB03oA2gIR0C2zVg482aVdX2UKGgGR0B1l3x3FDOUaAdN6ANoCEdAttBFgOSW7nV9lChoBkdAdXmF4LThHmgHTegDaAhHQLbTNyMUAT91fZQoaAZHQHYB6lYU34toB03oA2gIR0C21jDdxhlUdX2UKGgGR0B3CUnCwbEQaAdN6ANoCEdAttkpbhWHUXV9lChoBkdAcC0+I/JNkGgHTegDaAhHQLbcG9d/rjZ1fZQoaAZHQG3N/lyR0U5oB03oA2gIR0C23w5drwfAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f52a6080430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f52a60804c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f52a6080550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f52a60805e0>", "_build": "<function ActorCriticPolicy._build at 0x7f52a6080670>", "forward": "<function ActorCriticPolicy.forward at 0x7f52a6080700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f52a6080790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f52a6080820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f52a60808b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f52a6080940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f52a60809d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f52a6080a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f52a6081900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678693541646196832, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGTsTT54jiW/c2XhPsOyrj+Ih32//aVwvSEsAb+6pra+lZkpvzxLlD+vHBK+BXPyPx3Qj79ydKI9nRE4P4zZkD6WjRw/Z1Omv1iYEr8Ia2I+B1GUv2I8Kzyic+A/E3cKvWFxuL9Q1+M+siv3PiD9gL/dkDY/7RSlv1t3eL5H4J8/Sunsvv8ECsB1Yta+qN3Gv1m1Tz/IoR7AepEQQFawOL7xL6O/YjbWPBd+BD9fy2S/c5SFv3J9OT/3gpA/9NrOPoJAKb0cajS/PSCMP2UEoT7JqDE/UNfjPoWSBMAg/YC/U9cIO9+ex76pbBI/lJ18P7nrwL6cQjXAjmyIPfk1hb+Tpvs+Xifcv82jU76ojWfAMBmjv2ehHD0QZ7k+erDBvSBBBb6GGKQ/IQRtPyxUE8DJlTy/fF2Zv89+4D8ILxu9YXG4v1DX4z6yK/c+IP2Av4J3sD+P0YW/HQu4PTRKsz9GpWG/d8oCP1MATb8DU7S/jse+P/Paqb3m5QM/vapCPZnkpr8QK7A+0dw4PzBC8Lw1PD2/R4iIvm/LDb6pfk4/i8LSPr+Bdz9zewM/L+SVv8moMT/O0Q/Asiv3PiD9gL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADpFEQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAT8kNuwAAAAAHE+2/AAAAADasKr0AAAAAmsTdPwAAAAAWXNs9AAAAAF2I2z8AAAAA5NqDvQAAAACPW/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BKItgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC/w+z0AAAAA23bqvwAAAAA7tUq6AAAAAFX29z8AAAAArIzXvQAAAABRevU/AAAAAPeiYb0AAAAA5Q7evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK+UPrEAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5Xww+AAAAANHT7r8AAAAAEyCVPQAAAAAL6vc/AAAAAGjfYr0AAAAAic3fPwAAAACn/PC9AAAAAAMS5r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEv/40AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAynyGPQAAAAD8XOS/AAAAAH2epr0AAAAAgo72PwAAAACTfDA9AAAAAI2K6T8AAAAABFoBvgAAAAA2QfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxGs1ZTyayMAWyUTegDjAF0lEdArUJKQo1DSnV9lChoBkdAm0fdEw35vmgHTegDaAhHQK1DgUY8+zN1fZQoaAZHQJwHl1zQu29oB03oA2gIR0CtRN6jFhoedX2UKGgGR0CcAn7V8Ti9aAdN6ANoCEdArUdFkFwDNnV9lChoBkdAmZZfRqoIfWgHTegDaAhHQK1SOCr92ox1fZQoaAZHQJcAhoRIz31oB03oA2gIR0CtVDMDW9UTdX2UKGgGR0CY7vj5bhWHaAdN6ANoCEdArVXRQFcIJXV9lChoBkdAmEqodMj/uWgHTegDaAhHQK1YV9G7SRd1fZQoaAZHQJOPQzl90A9oB03oA2gIR0CtY/BE0BOpdX2UKGgGR0CMAhGGVRk3aAdN6ANoCEdArWUlGTcIq3V9lChoBkdAka6cJtzjm2gHTegDaAhHQK1mmJaaCtl1fZQoaAZHQJTrYoOQQtloB03oA2gIR0CtaSVLBbfQdX2UKGgGR0CXnQ+XJHRUaAdN6ANoCEdArXTUtqYZ23V9lChoBkdAlVvuEug6EWgHTegDaAhHQK12DUSZjQR1fZQoaAZHQJNrTDbah6BoB03oA2gIR0Ctd4tEPUaydX2UKGgGR0CWXUkpZwGXaAdN6ANoCEdArXn9jRUm2XV9lChoBkdAmJoc7yQPqmgHTegDaAhHQK2BjezlcQl1fZQoaAZHQJgjLOoo/iZoB03oA2gIR0CtgsUD+zdDdX2UKGgGR0CRkbGiYb84aAdN6ANoCEdArYQVrsSkCXV9lChoBkdAlzATPa+N+GgHTegDaAhHQK2GdNjbzsh1fZQoaAZHQJv1Zb3XZoRoB03oA2gIR0CtkYhoEjgRdX2UKGgGR0Ca5lVTJhfCaAdN6ANoCEdArZN/CXQdCHV9lChoBkdAlw4P0AcT8GgHTegDaAhHQK2VE57PY4B1fZQoaAZHQJoMztQbdadoB03oA2gIR0Ctl3Z7PY4AdX2UKGgGR0CZILWYF7laaAdN6ANoCEdArZ8S0QbuMXV9lChoBkdAmGWWY4Qz12gHTegDaAhHQK2gUAf+0gN1fZQoaAZHQJqKjiR4hU1oB03oA2gIR0CtoaN1yNn5dX2UKGgGR0CXEDar3j+8aAdN6ANoCEdAraQVXNke63V9lChoBkdAnDFlkQPI4mgHTegDaAhHQK2txUEPlMh1fZQoaAZHQJMx6G0u14RoB03oA2gIR0Ctr8okJKJ3dX2UKGgGR0CWYUIznA6/aAdN6ANoCEdArbIeuDBdlnV9lChoBkdAlu2P8AJb+2gHTegDaAhHQK21SAmzByl1fZQoaAZHQJeD0A0bcXZoB03oA2gIR0CtvPkZBLPEdX2UKGgGR0CX8ZV/+bVjaAdN6ANoCEdArb4uaH9FWnV9lChoBkdAlumPIKc/dWgHTegDaAhHQK2/o/SH/Ll1fZQoaAZHQJTcx8hLXcxoB03oA2gIR0CtwjcJMQEqdX2UKGgGR0CT4e7qIJqqaAdN6ANoCEdArcr9CzC1qnV9lChoBkdAmU78Q/X5FmgHTegDaAhHQK3M3Xlr/Kh1fZQoaAZHQJUyKY8dPtVoB03oA2gIR0CtzyXeN1hcdX2UKGgGR0CXrc2RaHKwaAdN6ANoCEdArdMZdyDIzXV9lChoBkdAlmFn/HYHxGgHTegDaAhHQK3fD4i5d4V1fZQoaAZHQJsEO/cnE2poB03oA2gIR0Ct4EHNPgvUdX2UKGgGR0CTW1/giu+zaAdN6ANoCEdAreGW36Q/5nV9lChoBkdAl4eN9H+ZPWgHTegDaAhHQK3kB0EHMU11fZQoaAZHQJFrYeeWfK9oB03oA2gIR0Ct7bfjCHh1dX2UKGgGR0CRncDQJHAiaAdN6ANoCEdAre/JH5Jsf3V9lChoBkdAmBg8NYr8SGgHTegDaAhHQK3yLaoMrmR1fZQoaAZHQJRBoco6S1VoB03oA2gIR0Ct9SVYhdMTdX2UKGgGR0CRZOjnFHawaAdN6ANoCEdArfytKRMewXV9lChoBkdAkihaUNayKWgHTegDaAhHQK394DQJHAh1fZQoaAZHQJTQrXoTwlVoB03oA2gIR0Ct/0JosZpBdX2UKGgGR0CWQBdM0xdqaAdN6ANoCEdArgGnMhX8wnV9lChoBkdAlZF24ZuQ62gHTegDaAhHQK4KVuYQarF1fZQoaAZHQI3Y9x2jfvZoB03oA2gIR0CuDDQRf4RFdX2UKGgGR0CYDykaMrEtaAdN6ANoCEdArg5ymfoRqXV9lChoBkdAly3bTtsvZmgHTegDaAhHQK4SZMnJDE51fZQoaAZHQJXpeQq7ROVoB03oA2gIR0CuGgy+g13udX2UKGgGR0CX7EHZK3/haAdN6ANoCEdArhs7kOqeb3V9lChoBkdAmdVv5Lytm2gHTegDaAhHQK4clqfOD8N1fZQoaAZHQJj25whnrY5oB03oA2gIR0CuHwXyy2QXdX2UKGgGR0CbPN77bcoIaAdN6ANoCEdAriaE/dIoVnV9lChoBkdAmsy5Y9xIa2gHTegDaAhHQK4oMDf3vhJ1fZQoaAZHQJnXzpJPIn1oB03oA2gIR0CuKjyAH3UQdX2UKGgGR0Cbewf642CNaAdN6ANoCEdAri4iquKXOXV9lChoBkdAmgJfb9If82gHTegDaAhHQK43dMj/uLJ1fZQoaAZHQJpGWY5T6zpoB03oA2gIR0CuOLEqMFUydX2UKGgGR0CbMs8wYcebaAdN6ANoCEdArjoPg1m8NHV9lChoBkdAmtaqVyFPBWgHTegDaAhHQK48hYOlO451fZQoaAZHQJowBCw8nu1oB03oA2gIR0CuREZr56+ndX2UKGgGR0Cbhdbuc+aCaAdN6ANoCEdArkV8XtShrXV9lChoBkdAm0f55Rjz7WgHTegDaAhHQK5G9peNT991fZQoaAZHQJqjbMeOn2toB03oA2gIR0CuSp1MEidKdX2UKGgGR0CYIdF2mpEQaAdN6ANoCEdArlf2DOC5E3V9lChoBkdAnZaTqOcUd2gHTegDaAhHQK5Z7iZOSGJ1fZQoaAZHQJtRNaIN3GJoB03oA2gIR0CuXCKLsKLLdX2UKGgGR0CbAdd5IH1OaAdN6ANoCEdArl6ZSP2f03V9lChoBkdAnT+wdGRV62gHTegDaAhHQK5mKcG1QZZ1fZQoaAZHQJl6mPtD2J1oB03oA2gIR0CuZ14XfqHHdX2UKGgGR0CWZte+Eh7maAdN6ANoCEdArmksoF3Y+XV9lChoBkdAlcz8QumJnGgHTegDaAhHQK5s7gZ0jkd1fZQoaAZHQJYpfzBhx5toB03oA2gIR0CudxjbSJCTdX2UKGgGR0CXNkPn0TURaAdN6ANoCEdArnhTh73PA3V9lChoBkdAlywVWjoIOmgHTegDaAhHQK55rPQfIS11fZQoaAZHQJWdUDB/I81oB03oA2gIR0CufBzpX6qLdX2UKGgGR0CYpb2FnIyTaAdN6ANoCEdAroOraPCEYnV9lChoBkdAmtOLAxi5NGgHTegDaAhHQK6E2KO1fE51fZQoaAZHQJpWb69CeEtoB03oA2gIR0CuhipHI6sAdX2UKGgGR0CYTDS+g13uaAdN6ANoCEdArokc0FbFCXV9lChoBkdAmTUoBBAv+WgHTegDaAhHQK6US/0NBnl1fZQoaAZHQJpWI0k4WDZoB03oA2gIR0CulXM2eg+RdX2UKGgGR0CafUVZLZi/aAdN6ANoCEdArpa9ocrAg3V9lChoBkdAmt9tWZJCjWgHTegDaAhHQK6ZEso2GZh1fZQoaAZHQJu/sK8cuJ1oB03oA2gIR0CuoH7QTmGNdX2UKGgGR0Cd6zaIvalDaAdN6ANoCEdArqG3MUypJnV9lChoBkdAnMDwfQrtmmgHTegDaAhHQK6jD6LwWnF1fZQoaAZHQJ1n6uDBdldoB03oA2gIR0CupWrUCq6wdX2UKGgGR0CdVv9pRGc4aAdN6ANoCEdArrCTB9Cu2nV9lChoBkdAmUZLN0NjLGgHTegDaAhHQK6ykcuJ1q51fZQoaAZHQJpPf/3nIQxoB03oA2gIR0Cus/W912aEdX2UKGgGR0CdGecYIjW1aAdN6ANoCEdArrZmAwwj+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1621.7214752286673, "std_reward": 54.76087200213805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T08:54:43.146726"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75845ab746d9e029cc1526b36dcffa5de6e576466be64196c997a90e72eb5eb4
|
3 |
+
size 2136
|