ReaderBench
commited on
Commit
•
537489f
1
Parent(s):
cea027b
Update README
Browse files
README.md
CHANGED
@@ -1,27 +1,112 @@
|
|
1 |
-
Model card for RoBERT-
|
2 |
|
3 |
-
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
## BERT base model for Romanian
|
7 |
|
8 |
|
9 |
#### How to use
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
## Training data
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
TBC
|
21 |
|
22 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
TBC
|
25 |
|
26 |
### BibTeX entry and citation info
|
27 |
|
@@ -29,7 +114,8 @@ TBC
|
|
29 |
@inproceedings{RoBERT,
|
30 |
title={RoBERT – A Romanian BERT Model},
|
31 |
author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai,
|
32 |
-
booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
|
33 |
year={2020}
|
34 |
}
|
35 |
```
|
|
|
|
1 |
+
Model card for RoBERT-small
|
2 |
|
3 |
+
---
|
4 |
+
language:
|
5 |
+
- ro
|
6 |
+
---
|
7 |
|
8 |
+
# RoBERT-ba
|
9 |
+
|
10 |
+
|
11 |
+
## Pretrained BERT model for Romanian
|
12 |
+
|
13 |
+
Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective.
|
14 |
+
It was introduced in this [paper](https://www.blank.org/). Three BERT models were released: RoBERT-small, **RoBERT-base** and RoBERT-large, all versions uncased.
|
15 |
+
|
16 |
+
| Model | Weights | L | H | A | MLM accuracy | NSP accuracy |
|
17 |
+
|----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:|
|
18 |
+
| RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 |
|
19 |
+
| *RoBERT-base* | *114M* | *12* | *768* | *12* | *0.6511* | *0.9802* |
|
20 |
+
| RoBERT-large | 341M | 24 | 1024 | 24 | 0.6929 | 0.9843 |
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
All models are available:
|
26 |
+
|
27 |
+
* [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small)
|
28 |
+
* [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base)
|
29 |
+
* [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large)
|
30 |
|
|
|
31 |
|
32 |
|
33 |
#### How to use
|
34 |
|
35 |
+
```python
|
36 |
+
# tensorflow
|
37 |
+
from transformers import AutoModel, AutoTokenizer, TFAutoModel
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
|
39 |
+
model = TFAutoModel.from_pretrained("readerbench/RoBERT-base")
|
40 |
+
inputs = tokenizer("exemplu de propoziție", return_tensors="tf")
|
41 |
+
outputs = model(inputs)
|
42 |
+
|
43 |
+
# pytorch
|
44 |
+
from transformers import AutoModel, AutoTokenizer, AutoModel
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
|
46 |
+
model = AutoModel.from_pretrained("readerbench/RoBERT-base")
|
47 |
+
inputs = tokenizer("exemplu de propoziție", return_tensors="pt")
|
48 |
+
outputs = model(**inputs)
|
49 |
+
```
|
50 |
|
51 |
|
52 |
## Training data
|
53 |
|
54 |
+
The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process.
|
55 |
|
56 |
+
| Corpus | Words | Sentences | Size (GB)|
|
57 |
+
|-----------|:---------:|:---------:|:--------:|
|
58 |
+
| Oscar | 1.78B | 87M | 10.8 |
|
59 |
+
| RoTex | 240M | 14M | 1.5 |
|
60 |
+
| RoWiki | 50M | 2M | 0.3 |
|
61 |
+
| **Total** | **2.07B** | **103M** | **12.6** |
|
62 |
|
|
|
63 |
|
64 |
+
## Downstream performance
|
65 |
+
|
66 |
+
### Sentiment analysis
|
67 |
+
|
68 |
+
We report Macro-averaged F1 score (in %)
|
69 |
+
|
70 |
+
| Model | Dev | Test |
|
71 |
+
|------------------|:--------:|:--------:|
|
72 |
+
| multilingual-BERT| 68.96 | 69.57 |
|
73 |
+
| XLM-R-base | 71.26 | 71.71 |
|
74 |
+
| BERT-base-ro | 70.49 | 71.02 |
|
75 |
+
| RoBERT-small | 66.32 | 66.37 |
|
76 |
+
| *RoBERT-base* | *70.89* | *71.61* |
|
77 |
+
| RoBERT-large | **72.48**| **72.11**|
|
78 |
+
|
79 |
+
### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification
|
80 |
+
|
81 |
+
We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %).
|
82 |
+
|
83 |
+
| Model | Dialect Classification | MD to RO | RO to MD |
|
84 |
+
|-------------------|:----------------------:|:--------:|:--------:|
|
85 |
+
| 2-CNN + SVM | 93.40 | 65.09 | 75.21 |
|
86 |
+
| Char+Word SVM | 96.20 | 69.08 | 81.93 |
|
87 |
+
| BiGRU | 93.30 | **70.10**| 80.30 |
|
88 |
+
| multilingual-BERT | 95.34 | 68.76 | 78.24 |
|
89 |
+
| XLM-R-base | 96.28 | 69.93 | 82.28 |
|
90 |
+
| BERT-base-ro | 96.20 | 69.93 | 78.79 |
|
91 |
+
| RoBERT-small | 95.67 | 69.01 | 80.40 |
|
92 |
+
| *RoBERT-base* | *97.39* | *68.30* | *81.09* |
|
93 |
+
| RoBERT-large | **97.78** | 69.91 | **83.65**|
|
94 |
+
|
95 |
+
### Diacritics Restoration
|
96 |
+
|
97 |
+
Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %.
|
98 |
+
|
99 |
+
| Model | word level | char level |
|
100 |
+
|-----------------------------|:----------:|:----------:|
|
101 |
+
| BiLSTM | 99.42 | - |
|
102 |
+
| CharCNN | 98.40 | 99.65 |
|
103 |
+
| CharCNN + multilingual-BERT | 99.72 | 99.94 |
|
104 |
+
| CharCNN + XLM-R-base | 99.76 | **99.95** |
|
105 |
+
| CharCNN + BERT-base-ro | **99.79** | **99.95** |
|
106 |
+
| CharCNN + RoBERT-small | 99.73 | 99.94 |
|
107 |
+
| *CharCNN + RoBERT-base* | *99.78* | **99.95** |
|
108 |
+
| CharCNN + RoBERT-large | 99.76 | **99.95** |
|
109 |
|
|
|
110 |
|
111 |
### BibTeX entry and citation info
|
112 |
|
|
|
114 |
@inproceedings{RoBERT,
|
115 |
title={RoBERT – A Romanian BERT Model},
|
116 |
author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai,
|
117 |
+
booktitle={Proceedings of the 28th International Conference on Computational Linguistics (COLING)},
|
118 |
year={2020}
|
119 |
}
|
120 |
```
|
121 |
+
|