Update README.md
Browse files
README.md
CHANGED
@@ -1,15 +1,73 @@
|
|
1 |
---
|
2 |
base_model: readerbench/RoBERT-base
|
|
|
|
|
3 |
tags:
|
4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
|
|
10 |
model-index:
|
11 |
- name: ro-sentiment-03
|
12 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -26,6 +84,11 @@ It achieves the following results on the evaluation set:
|
|
26 |
- F1: 0.8652
|
27 |
- F1 Weighted: 0.8287
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
## Model description
|
30 |
|
31 |
More information needed
|
@@ -50,14 +113,14 @@ The following hyperparameters were used during training:
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_ratio: 0.2
|
53 |
-
- num_epochs: 10
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
|
59 |
| 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 |
|
60 |
-
| 0.3861 | 2.0 | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | 0.8442 |
|
61 |
| 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 |
|
62 |
|
63 |
|
|
|
1 |
---
|
2 |
base_model: readerbench/RoBERT-base
|
3 |
+
language:
|
4 |
+
- ro
|
5 |
tags:
|
6 |
+
- sentiment
|
7 |
+
- classification
|
8 |
+
- nlp
|
9 |
+
- bert
|
10 |
+
datasets:
|
11 |
+
- decathlon_reviews
|
12 |
+
- cinemagia_reviews
|
13 |
metrics:
|
14 |
- accuracy
|
15 |
- precision
|
16 |
- recall
|
17 |
- f1
|
18 |
+
- f1 weighted
|
19 |
model-index:
|
20 |
- name: ro-sentiment-03
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification # Required. Example: automatic-speech-recognition
|
24 |
+
name: Text Classification # Optional. Example: Speech Recognition
|
25 |
+
dataset:
|
26 |
+
type: ro_sent # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
27 |
+
name: Rommanian Sentiment Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
|
28 |
+
config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
29 |
+
split: all # Optional. Example: test
|
30 |
+
metrics:
|
31 |
+
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
|
32 |
+
value: 0.85 # Required. Example: 20.90
|
33 |
+
name: Accuracy # Optional. Example: Test WER
|
34 |
+
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
|
35 |
+
value: 0.85 # Required. Example: 20.90
|
36 |
+
name: Precision # Optional. Example: Test WER
|
37 |
+
- type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
|
38 |
+
value: 0.85 # Required. Example: 20.90
|
39 |
+
name: Recall # Optional. Example: Test WER
|
40 |
+
- type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
|
41 |
+
value: 0.85 # Required. Example: 20.90
|
42 |
+
name: Weighted F1 # Optional. Example: Test WER
|
43 |
+
- type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
|
44 |
+
value: 0.84 # Required. Example: 20.90
|
45 |
+
name: Weighted F1 # Optional. Example: Test WER
|
46 |
+
- task:
|
47 |
+
type: text-classification # Required. Example: automatic-speech-recognition
|
48 |
+
name: Text Classification # Optional. Example: Speech Recognition
|
49 |
+
dataset:
|
50 |
+
type: laroseda # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
|
51 |
+
name: A Large Romanian Sentiment Data Set # Required. A pretty name for the dataset. Example: Common Voice (French)
|
52 |
+
config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
53 |
+
split: all # Optional. Example: test
|
54 |
+
metrics:
|
55 |
+
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
|
56 |
+
value: 0.85 # Required. Example: 20.90
|
57 |
+
name: Accuracy # Optional. Example: Test WER
|
58 |
+
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
|
59 |
+
value: 0.86 # Required. Example: 20.90
|
60 |
+
name: Precision # Optional. Example: Test WER
|
61 |
+
- type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
|
62 |
+
value: 0.85 # Required. Example: 20.90
|
63 |
+
name: Recall # Optional. Example: Test WER
|
64 |
+
- type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
|
65 |
+
value: 0.84 # Required. Example: 20.90
|
66 |
+
name: Weighted F1 # Optional. Example: Test WER
|
67 |
+
- type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
|
68 |
+
value: 0.84 # Required. Example: 20.90
|
69 |
+
name: Weighted F1 # Optional. Example: Test WER
|
70 |
+
|
71 |
---
|
72 |
|
73 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
84 |
- F1: 0.8652
|
85 |
- F1 Weighted: 0.8287
|
86 |
|
87 |
+
### Evaluation on other datasets
|
88 |
+
|
89 |
+
**SENT_RO**
|
90 |
+
|
91 |
+
|
92 |
## Model description
|
93 |
|
94 |
More information needed
|
|
|
113 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
114 |
- lr_scheduler_type: linear
|
115 |
- lr_scheduler_warmup_ratio: 0.2
|
116 |
+
- num_epochs: 10 (Early stop epoch 3, best epoch 2)
|
117 |
|
118 |
### Training results
|
119 |
|
120 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted |
|
121 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
|
122 |
| 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 |
|
123 |
+
| 0.3861 | **2.0** | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | **0.8442** |
|
124 |
| 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 |
|
125 |
|
126 |
|