andyP commited on
Commit
649d283
1 Parent(s): 6922b1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -4
README.md CHANGED
@@ -1,15 +1,73 @@
1
  ---
2
  base_model: readerbench/RoBERT-base
 
 
3
  tags:
4
- - generated_from_trainer
 
 
 
 
 
 
5
  metrics:
6
  - accuracy
7
  - precision
8
  - recall
9
  - f1
 
10
  model-index:
11
  - name: ro-sentiment-03
12
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -26,6 +84,11 @@ It achieves the following results on the evaluation set:
26
  - F1: 0.8652
27
  - F1 Weighted: 0.8287
28
 
 
 
 
 
 
29
  ## Model description
30
 
31
  More information needed
@@ -50,14 +113,14 @@ The following hyperparameters were used during training:
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
  - lr_scheduler_warmup_ratio: 0.2
53
- - num_epochs: 10
54
 
55
  ### Training results
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted |
58
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
59
  | 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 |
60
- | 0.3861 | 2.0 | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | 0.8442 |
61
  | 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 |
62
 
63
 
 
1
  ---
2
  base_model: readerbench/RoBERT-base
3
+ language:
4
+ - ro
5
  tags:
6
+ - sentiment
7
+ - classification
8
+ - nlp
9
+ - bert
10
+ datasets:
11
+ - decathlon_reviews
12
+ - cinemagia_reviews
13
  metrics:
14
  - accuracy
15
  - precision
16
  - recall
17
  - f1
18
+ - f1 weighted
19
  model-index:
20
  - name: ro-sentiment-03
21
+ results:
22
+ - task:
23
+ type: text-classification # Required. Example: automatic-speech-recognition
24
+ name: Text Classification # Optional. Example: Speech Recognition
25
+ dataset:
26
+ type: ro_sent # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
27
+ name: Rommanian Sentiment Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
28
+ config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
29
+ split: all # Optional. Example: test
30
+ metrics:
31
+ - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
32
+ value: 0.85 # Required. Example: 20.90
33
+ name: Accuracy # Optional. Example: Test WER
34
+ - type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
35
+ value: 0.85 # Required. Example: 20.90
36
+ name: Precision # Optional. Example: Test WER
37
+ - type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
38
+ value: 0.85 # Required. Example: 20.90
39
+ name: Recall # Optional. Example: Test WER
40
+ - type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
41
+ value: 0.85 # Required. Example: 20.90
42
+ name: Weighted F1 # Optional. Example: Test WER
43
+ - type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
44
+ value: 0.84 # Required. Example: 20.90
45
+ name: Weighted F1 # Optional. Example: Test WER
46
+ - task:
47
+ type: text-classification # Required. Example: automatic-speech-recognition
48
+ name: Text Classification # Optional. Example: Speech Recognition
49
+ dataset:
50
+ type: laroseda # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
51
+ name: A Large Romanian Sentiment Data Set # Required. A pretty name for the dataset. Example: Common Voice (French)
52
+ config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
53
+ split: all # Optional. Example: test
54
+ metrics:
55
+ - type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
56
+ value: 0.85 # Required. Example: 20.90
57
+ name: Accuracy # Optional. Example: Test WER
58
+ - type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
59
+ value: 0.86 # Required. Example: 20.90
60
+ name: Precision # Optional. Example: Test WER
61
+ - type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
62
+ value: 0.85 # Required. Example: 20.90
63
+ name: Recall # Optional. Example: Test WER
64
+ - type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
65
+ value: 0.84 # Required. Example: 20.90
66
+ name: Weighted F1 # Optional. Example: Test WER
67
+ - type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
68
+ value: 0.84 # Required. Example: 20.90
69
+ name: Weighted F1 # Optional. Example: Test WER
70
+
71
  ---
72
 
73
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
84
  - F1: 0.8652
85
  - F1 Weighted: 0.8287
86
 
87
+ ### Evaluation on other datasets
88
+
89
+ **SENT_RO**
90
+
91
+
92
  ## Model description
93
 
94
  More information needed
 
113
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
114
  - lr_scheduler_type: linear
115
  - lr_scheduler_warmup_ratio: 0.2
116
+ - num_epochs: 10 (Early stop epoch 3, best epoch 2)
117
 
118
  ### Training results
119
 
120
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted |
121
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
122
  | 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 |
123
+ | 0.3861 | **2.0** | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | **0.8442** |
124
  | 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 |
125
 
126