Out repository flan-alpaca-lora contains the details to train flan-t5 with Alpaca instructions and low-rank adaptation.

You can use the following code easily.

Usage:

import transformers
from peft import PeftModel

model_name = "google/flan-t5-large"; peft_model_id = "reasonwang/flan-alpaca-lora-large"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_name)
peft_model = PeftModel.from_pretrained(base_model, peft_model_id)

inputs = tokenizer("List a few tips to get good scores in math.", return_tensors="pt")
outputs = peft_model.generate(**inputs, max_length=128, do_sample=True)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.