ppo-MountainCar-v0 / config.json
rebuzik's picture
Upload PPO MountainCar-v0 trained agent
33783b9
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3b61597e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3b6159870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3b6159900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3b6159990>", "_build": "<function ActorCriticPolicy._build at 0x7ff3b6159a20>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3b6159ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3b6159b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3b6159bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3b6159c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3b6159cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3b6159d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3b6159e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3b62fa7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1605632, "_total_timesteps": 1600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693366394531677043, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAET6yj5KWhU86/uJvwbvg70CN6q+6dwuPQ5j7L5tchU7XmqovVUVcT3WHwi/khAWvcYQxz7ZGUg9yGHvvhTsfDylrrq+NiovPBODcr/cqwk9F6fTvsVMv7rh09Y9KBn6PP2Y6r6wKCk9SPRzvrGlqDslY+W+4ekWPGWnLb+dsSO9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF1AAAAAAACMAWyUS3WMAXSUR0CjbbpI+W4WdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0CjbceFL39KdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CjbcORLbpNdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjbcSgGr0bdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjbcya3I+4dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CjbdciGFi8dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjbe/JeVs2dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0Cjbf2TxG2DdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjbf9AgPmQdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjbflqi48VdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CjbhhkiD/VdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CjbgmVZ9uxdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CjbiD3mFJydX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjbiqDTSb6dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjbiQAEMb4dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjbjW25QP7dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CjbkBMrVe8dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CjbkaQV9F4dX2UKGgGR8BmIAAAAAAAaAdLsWgIR0CjbkL39JjEdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CjbkKf4AS4dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CjblQM6RyPdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0Cjbm9Net0WdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CjbniqZML4dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0CjboC5uqFRdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjbng/s3Q2dX2UKGgGR8BlAAAAAAAAaAdLqGgIR0CjbodJBgNPdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CjbpVfNRm9dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CjbpNuUD+zdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CjbqH7YTTOdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Cjboz1schldX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Cjbq/Z/Tb4dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CjbrTS9du6dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjbsOloDgZdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CjbsE/bCaadX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CjbsDrJKaodX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CjbsTPrv9cdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CjbuTpX6qLdX2UKGgGR8BkQAAAAAAAaAdLomgIR0Cjbtv1ct5EdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Cjbu7R4QjEdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0Cjbvf642CNdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Cjbv6iCaqkdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0CjbwE384xUdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0CjbwyBkI5YdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CjbweHaewtdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjbxg4OtnxdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CjbyRlg+hXdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CjbyMnqmj1dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjby16E8JVdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CjbzNi6QNkdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0Cjb0ES/TLGdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjbz+vyLAIdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjbz9iUgSwdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0Cjb0yxiXpodX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjb0htk4FSdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Cjb1jRUm2LdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0Cjb2KpT/ACdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjb3frrxAjdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0Cjb2UiILw4dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjb4HerMkhdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0Cjb5I99tuUdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjb4uuq3mWdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0Cjb6P69CeFdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0Cjb5a8QI2PdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0Cjb6XQdCE6dX2UKGgGR8BWwAAAAAAAaAdLW2gIR0Cjb6Vct5D7dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjb68c+7lJdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjb8CRnvlVdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjb8vfTCtSdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0Cjb8fbKzRhdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Cjb9gf+0gKdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Cjb9MuvlltdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Cjb90q6OHWdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0Cjb+Imw7kodX2UKGgGR8BcwAAAAAAAaAdLc2gIR0Cjb/c32mHhdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0Cjb+Fa8pTddX2UKGgGR8BUwAAAAAAAaAdLU2gIR0Cjb/IJzDGcdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CjcABeXzDodX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CjcAJHI6sAdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CjcBMURFqjdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CjcAvtMPBjdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CjcCuT7l7udX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CjcCS6lLvkdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CjcDbEHdGidX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CjcDyAH3UQdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CjcECpvP1MdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjcEbbDdgwdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjcE2+PBBSdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CjcFVP3ztkdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CjcF6mXPZ7dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0CjcGKoIfKZdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0CjcHaCcwxndX2UKGgGR8BdgAAAAAAAaAdLdmgIR0CjcGLdN34cdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0CjcHObqhUSdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CjcHxh2GIsdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CjcIrUb1h9dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CjcJ52yLQ5dX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CjcKZLRKHxdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CjcKD0cwQEdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CjcLNet0V8dX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CjcKxAKOT8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1406, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}