Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +72 -14
- config.json +0 -1
- figures/XHSlong750px.png +0 -0
- figures/new_logo.png +3 -0
- figures/performance.png +3 -0
- figures/wechat.png +3 -0
.gitattributes
CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
figures/performance.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
figures/performance.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
figures/new_logo.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
figures/wechat.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,44 +1,67 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
license_link: https://huggingface.co/rednote-hilab/dots.llm1.
|
4 |
pipeline_tag: text-generation
|
5 |
base_model: rednote-hilab/dots.llm1.base
|
6 |
tags:
|
7 |
- chat
|
8 |
library_name: transformers
|
9 |
-
language:
|
10 |
-
- en
|
11 |
-
- zh
|
12 |
---
|
13 |
|
14 |
# dots1
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## 1. Introduction
|
18 |
|
19 |
|
20 |
-
`dots.llm1` is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models
|
21 |
-
Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B
|
22 |
|
23 |
|
24 |
<p align="center">
|
25 |
<img width="90%" src="./figures/performance.png">
|
26 |
</p>
|
27 |
|
28 |
-
|
29 |
## 2. Model Summary
|
30 |
|
31 |
**This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
|
32 |
|
33 |
-
- Type: A 14B
|
34 |
-
- Training
|
35 |
-
- Architecture: Multi-head Attention with QK-Norm in
|
36 |
- Number of Layers: 62
|
37 |
- Number of Attention Heads: 32
|
|
|
38 |
- Context Length: 32,768 tokens
|
39 |
- License: MIT
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## 3. Example Usage
|
44 |
|
@@ -53,6 +76,42 @@ For more details, please refer to our [report](dots1_tech_report.pdf).
|
|
53 |
|
54 |
</div>
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
### Inference with huggingface
|
57 |
|
58 |
#### Text Completion
|
@@ -106,8 +165,7 @@ python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0
|
|
106 |
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
107 |
|
108 |
### Inference with vllm
|
109 |
-
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
|
110 |
-
`vllm>=***` is recommended.
|
111 |
|
112 |
```shell
|
113 |
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
|
@@ -116,7 +174,7 @@ An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
|
116 |
|
117 |
## 4. Evaluation Results
|
118 |
|
119 |
-
Detailed evaluation results are reported in this [📑 report](dots1_tech_report.pdf).
|
120 |
|
121 |
## Citation
|
122 |
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
license_link: https://huggingface.co/rednote-hilab/dots.llm1.base/blob/main/LICENSE
|
4 |
pipeline_tag: text-generation
|
5 |
base_model: rednote-hilab/dots.llm1.base
|
6 |
tags:
|
7 |
- chat
|
8 |
library_name: transformers
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
# dots1
|
12 |
|
13 |
+
<p align="center">
|
14 |
+
<img src="figures/new_logo.png" width="200"/>
|
15 |
+
<p>
|
16 |
+
|
17 |
+
<p align="center">
|
18 |
+
  🤗 <a href="https://huggingface.co/rednote-hilab">Hugging Face</a>   |    📑 <a href="https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf">Paper</a>   
|
19 |
+
<br>
|
20 |
+
🖥️ <a href="https://huggingface.co/spaces/rednote-hilab/dots-demo">Demo</a>   |   💬 <a href="figures/wechat.png">WeChat (微信)</a>   |   📕 <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c">rednote</a>  
|
21 |
+
</p>
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
Visit our Hugging Face (click links above), search checkpoints with names starting with `dots.llm1` or visit the [dots1 collection](https://huggingface.co/collections/rednote-hilab/dotsllm1-68246aaaaba3363374a8aa7c), and you will find all you need! Enjoy!
|
27 |
+
|
28 |
+
|
29 |
+
## News
|
30 |
+
|
31 |
+
- 2025.06.06: We released the `dots.llm1` series. Check our [report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf) for more details!
|
32 |
+
|
33 |
|
34 |
## 1. Introduction
|
35 |
|
36 |
|
37 |
+
The `dots.llm1` model is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models.
|
38 |
+
Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B after pretrained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
|
39 |
|
40 |
|
41 |
<p align="center">
|
42 |
<img width="90%" src="./figures/performance.png">
|
43 |
</p>
|
44 |
|
|
|
45 |
## 2. Model Summary
|
46 |
|
47 |
**This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
|
48 |
|
49 |
+
- Type: A MoE model with 14B activated and 142B total parameters trained on 11.2T tokens.
|
50 |
+
- Training Stages: Pretraining and SFT.
|
51 |
+
- Architecture: Multi-head Attention with QK-Norm in attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
|
52 |
- Number of Layers: 62
|
53 |
- Number of Attention Heads: 32
|
54 |
+
- Supported Languages: English, Chinese
|
55 |
- Context Length: 32,768 tokens
|
56 |
- License: MIT
|
57 |
|
58 |
+
The highlights from `dots.llm1` include:
|
59 |
+
|
60 |
+
- **Enhanced Data Processing**: We propose a scalable and fine-grained *three-stage* data processing framework designed to generate large-scale, high-quality and diverse data for pretraining.
|
61 |
+
- **No Synthetic Data during Pretraining**: *11.2 trillion* high-quality non-synthetic tokens was used in base model pretraining.
|
62 |
+
- **Performance and Cost Efficiency**: `dots.llm1` is an open-source model that activates only *14B* parameters at inference, delivering both comprehensive capabilities and high computational efficiency.
|
63 |
+
- **Infrastructure**: We introduce an innovative MoE all-to-all communication and computation overlapping recipe based on interleaved 1F1B pipeline scheduling and an efficient grouped GEMM implementation to boost computational efficiency.
|
64 |
+
- **Open Accessibility to Model Dynamics**: Intermediate model checkpoints for *every 1T tokens* trained are released, facilitating future research into the learning dynamics of large language models.
|
65 |
|
66 |
## 3. Example Usage
|
67 |
|
|
|
76 |
|
77 |
</div>
|
78 |
|
79 |
+
### Docker (recommended)
|
80 |
+
|
81 |
+
|
82 |
+
The docker images are available on [Docker Hub](https://hub.docker.com/repository/docker/rednotehilab/dots1/tags), based on the official images.
|
83 |
+
|
84 |
+
You can start a server via vllm.
|
85 |
+
|
86 |
+
```shell
|
87 |
+
docker run --gpus all \
|
88 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
89 |
+
-p 8000:8000 \
|
90 |
+
--ipc=host \
|
91 |
+
rednotehilab/dots1:vllm-openai-v0.9.0.1 \
|
92 |
+
--model rednote-hilab/dots.llm1.inst \
|
93 |
+
--tensor-parallel-size 8 \
|
94 |
+
--trust-remote-code \
|
95 |
+
--served-model-name dots1
|
96 |
+
```
|
97 |
+
|
98 |
+
Then you can verify whether the model is running successfully in the following way.
|
99 |
+
|
100 |
+
```shell
|
101 |
+
curl http://localhost:8000/v1/chat/completions \
|
102 |
+
-H "Content-Type: application/json" \
|
103 |
+
-d '{
|
104 |
+
"model": "dots1",
|
105 |
+
"messages": [
|
106 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
107 |
+
{"role": "user", "content": "Who won the world series in 2020?"}
|
108 |
+
],
|
109 |
+
"max_tokens": 32,
|
110 |
+
"temperature": 0
|
111 |
+
}'
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
### Inference with huggingface
|
116 |
|
117 |
#### Text Completion
|
|
|
165 |
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
166 |
|
167 |
### Inference with vllm
|
168 |
+
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended.
|
|
|
169 |
|
170 |
```shell
|
171 |
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
|
|
|
174 |
|
175 |
## 4. Evaluation Results
|
176 |
|
177 |
+
Detailed evaluation results are reported in this [📑 report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf).
|
178 |
|
179 |
## Citation
|
180 |
|
config.json
CHANGED
@@ -28,7 +28,6 @@
|
|
28 |
"rope_theta": 10000000,
|
29 |
"routed_scaling_factor": 2.5,
|
30 |
"sliding_window": null,
|
31 |
-
"scoring_func": "noaux_tc",
|
32 |
"tie_word_embeddings": false,
|
33 |
"torch_dtype": "bfloat16",
|
34 |
"transformers_version": "4.46.3",
|
|
|
28 |
"rope_theta": 10000000,
|
29 |
"routed_scaling_factor": 2.5,
|
30 |
"sliding_window": null,
|
|
|
31 |
"tie_word_embeddings": false,
|
32 |
"torch_dtype": "bfloat16",
|
33 |
"transformers_version": "4.46.3",
|
figures/XHSlong750px.png
ADDED
![]() |
figures/new_logo.png
ADDED
![]() |
Git LFS Details
|
figures/performance.png
ADDED
![]() |
Git LFS Details
|
figures/wechat.png
ADDED
![]() |
Git LFS Details
|