jat-regent-large-embeddings / configuration_jat.py
ksridhar's picture
Upload config
26e3879 verified
raw
history blame
6.53 kB
from transformers import GPTNeoConfig
class JatConfig(GPTNeoConfig):
r"""
This is the configuration class to store the configuration of a [`JatModel`]. It is used to instantiate a Jat
model according to the specified arguments, defining the model architecture. Instantiating a configuration with
the defaults will yield a similar configuration to that of the ... (TODO)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_size (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
num_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`):
The type of attention for each layer in a `List` of the following format `[[["attention_type"],
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
value of `attention_type` from `["global", "local"]`
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
window_size (`int`, *optional*, defaults to 256):
The size of the sliding window for local attention.
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
resid_dropout (`float`, *optional*, defaults to 0.0):
Residual dropout used in the attention pattern.
embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
dropout ratio for the hidden layer.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 50256):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 50256):
The id of the end of sentence token in the vocabulary.
max_continuous_size (`int`, *optional*, default to 376):
The maximum size of the continuous values.
max_discrete_value (`int`, *optional*, default to 18):
The maximum value of the discrete values.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
observation_loss_coef (`float`, *optional*, defaults to 0.005):
The coefficient for the observation loss. When set to 0.0, the observation is not even predicted.
action_loss_coef (`float`, *optional*, defaults to 0.995):
The coefficient for the action loss.
"""
model_type = "jat"
def __init__(
self,
vocab_size=50257,
max_position_embeddings=2048,
hidden_size=2048,
num_layers=24,
attention_types=[[["global", "local"], 12]],
num_heads=16,
intermediate_size=None,
window_size=256,
activation_function="gelu_new",
resid_dropout=0.0,
embed_dropout=0.0,
attention_dropout=0.0,
classifier_dropout=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
max_continuous_size=377,
max_discrete_value=18,
image_size=224,
num_channels=3,
patch_size=16,
observation_loss_coef=0.005,
action_loss_coef=0.995,
**kwargs,
):
super().__init__(
vocab_size,
max_position_embeddings,
hidden_size,
num_layers,
attention_types,
num_heads,
intermediate_size,
window_size,
activation_function,
resid_dropout,
embed_dropout,
attention_dropout,
classifier_dropout,
layer_norm_epsilon,
initializer_range,
use_cache,
bos_token_id,
eos_token_id,
**kwargs,
)
self.max_continuous_size = max_continuous_size
self.max_discrete_value = max_discrete_value
self.image_size = image_size
self.num_channels = num_channels
self.patch_size = patch_size
self.observation_loss_coef = observation_loss_coef
self.action_loss_coef = action_loss_coef
JatConfig.register_for_auto_class()