Reinforcement Learning
PyTorch
jat
custom_code
File size: 39,989 Bytes
04fce5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from gymnasium import spaces
from torch import BoolTensor, FloatTensor, LongTensor, Tensor, nn
from transformers import GPTNeoModel, GPTNeoPreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.models.vit.modeling_vit import ViTPatchEmbeddings
import torch.nn.functional as F


from jat.configuration_jat import JatConfig
from jat.processing_jat import JatProcessor
from jat.modeling_jat import JatModel, compute_mse_loss, cyclic_expand_dim, JatOutput
from regent.utils import build_index_vector, get_task_info, collect_all_data, process_row_of_obs_atari_full_without_mask, retrieve_vector, myprint, L2dist, get_dist_stats, get_images_of_retrieved_obs, get_emb_transform_model_dim, get_optional_suffix
from regent.atari_utils import convert_local_to_global_action, convert_global_to_local_action
from regent.eval.rl import SEEN_TASK_NAME_TO_ENV_ID, UNSEEN_TASK_NAME_TO_ENV_ID
from PIL import Image
import os
from copy import deepcopy
from pytorch_msssim import ssim
import json


def cross_entropy_from_softmax(softmax_probs, targets, reduction="mean", epsilon=1e-9):
    """
    Calculate the cross entropy loss given softmax_probs and targets.

    :param softmax_probs: tensor containing softmax probabilities
    :param targets: tensor containing the target classes (not one-hot encoded)
    :return: cross entropy loss
    """
    assert len(softmax_probs.shape) == 2, "softmax_probs should be of shape (batch_size, num_classes)"
    assert len(targets.shape) == 1, "targets should be of shape (batch_size,)"

    # Convert targets to one-hot encoding
    targets_one_hot = F.one_hot(targets, num_classes=softmax_probs.shape[1]).float() # shape: (batch_size, num_classes)
    
    # Calculate the cross entropy loss
    softmax_probs = softmax_probs.clamp(min=epsilon, max=1-epsilon) # to avoid NaNs from log(0) and instabilities from log(1)
    log_softmax_probs = softmax_probs.log()  # safe to take log as softmax_probs are non-zero
    loss = -torch.sum(targets_one_hot * log_softmax_probs, dim=1)

    if reduction == "mean":
        return loss.mean()
    elif reduction == "sum":
        return loss.sum()
    elif reduction == "none":
        return loss
    else:
        raise ValueError("reduction should be one of 'mean', 'sum', or 'none'")


def compute_ce_loss_from_softmax(
    logits: FloatTensor, labels: torch.LongTensor, mask: Optional[BoolTensor], weights: Optional[FloatTensor] = None
) -> FloatTensor:
    """
    Compute the Cross Entropy (CE) loss between predicted logits and true class labels, considering valid timesteps.

    Args:
        logits (`FloatTensor` of shape `(batch_size, max_seq_len, [inner_size,] num_classes)`):
            Predicted logits at the output of the model.
        labels (`torch.LongTensor` of shape `(batch_size, max_seq_len, [inner_size,])`):
            Ground truth class labels.
        mask (`BoolTensor` of shape `(batch_size, max_seq_len)`, *optional*):
            Boolean mask indicating valid timesteps.
        weights (`FloatTensor` of shape `(batch_size, max_seq_len)`, *optional*):
            Weights to be applied to the loss.

    Returns:
        loss (`FloatTensor` of shape `(,)`):
            CE loss between predicted logits and true class labels.
    """
    if mask is not None:
        logits = logits[mask.bool()]  # (Y, X, C)
        labels = labels[mask.bool()]  # (Y, X)
        if weights is not None:
            weights = weights[mask.bool()]  # (Y,)
    else:
        logits = logits.flatten(end_dim=2)  # (B, L, X, C) -> (B*L, X, C)
        labels = labels.flatten(end_dim=1)  # (B, L, X) -> (B*L, X)
        if weights is not None:
            weights = weights.flatten(end_dim=1)  # (B, L) -> (B*L,)

    loss = cross_entropy_from_softmax(logits.view(-1, logits.size(-1)), labels.view(-1), reduction="none")  # (Y*X,) # we don't use F.cross_entropy here to avoid double softmax
    loss = loss.view(labels.size())  # (Y, X)
    loss = loss.mean(-1)  # (Y,)

    # Multiply the loss by the weights
    if weights is not None:
        loss = loss * weights  # (Y,)

    # Average the loss
    loss = loss.mean()

    return loss


def crazy_relu(x, beta):
    return nn.LeakyReLU(beta)(x) - (1-beta) * nn.ReLU()(x-1)


class JatRegentModel(JatModel):
    """
    Jat Regent model.
    """
    def __init__(self, config: JatConfig) -> None:
        super().__init__(config)
        hidden_size = config.hidden_size
        action_vocab_size = config.action_vocab_size

        if config.ONLY_RL_TASKS:
            self.single_discrete_decoder = nn.Linear(hidden_size, action_vocab_size, bias=False)
            self.N = config.action_vocab_size
        else:
            self.N = config.vocab_size
        self.multi_discrete_decoder = None # not needed
        self.image_decoder = None # not needed
        self.num_contexts = config.num_contexts # used in get_next_action() at evaluation in an env only
        self.lamda = config.lamda # used in get_next_action() at evaluation in an env only
        self.use_global_atari_actions = config.use_global_atari_actions
        self.dist_multipliers = {'mujoco': config.mujoco_dist_multiplier, 'atari': config.atari_dist_multiplier}
        self.dist_normalizer = config.dist_normalizer
        self.atari_dist_type = config.atari_dist_type
        self.use_atari_embeddings = config.use_atari_embeddings
        self.finetune_num_demos = config.finetune_num_demos if hasattr(config, 'finetune_num_demos') else None
        if self.use_atari_embeddings:
            self.image_encoder = None
            self.emb_dim_full = (512,)

        # print number of parameters
        num_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
        myprint(f"number of parameters: {num_params / 1e6:.4f}M")

    def retrieval_setup(self,
                        task,
                        dataset, 
                        num_demos, # to retrieve from
                        device,
                        batch_size_retrieval=16, # for atari envs on gpu
                        nb_cores_autofaiss=8, # for vector obs envs on cpu cores
    ):
        # setup
        rew_key, attn_key, obs_key, act_key, B, obs_dim, act_dim = get_task_info(task)
        extra_key = 'discrete_RandP_action_logits' if task.startswith("atari") or task.startswith("babyai") else 'continuous_RandP_actions'
        optional_suffix = get_optional_suffix(task, self.atari_dist_type, self.finetune_num_demos)
        mean_dist, std_dist, max_dist, p80, p85, p90, p95, p99 = get_dist_stats(task=task, optional_suffix=optional_suffix)
        
        # get embedding model
        if task.startswith("atari"):
            self.emb_transform, self.emb_model, emb_dim, self.emb_model_full = get_emb_transform_model_dim(self.atari_dist_type, self.device, return_emb_weights=True)
            obs_dim = emb_dim # overwrite for atari_dist_type

        kwargs = {'B': B,
              'obs_dim': obs_dim,
              'attn_key': attn_key,
              'obs_key': obs_key,
              'device': device,
              'task': task,
              'batch_size_retrieval': batch_size_retrieval,
              'nb_cores_autofaiss': nb_cores_autofaiss,
              'verbose': False,
              'atari_dist_type': self.atari_dist_type,
            }
        raw_obs_dim = obs_dim
        if task.startswith("atari"): # overwrite raw_obs_dim because raw obs in atari are (4, 84, 84) and raw obs in babyai have 64 extra dim
            raw_obs_dim = (4, 84, 84)
        elif task.startswith("babyai"):
            raw_obs_dim = (obs_dim[0]+64,)
        
        # save
        self.task = task
        self.dataset = dataset
        self.obs_key = obs_key
        self.act_key = act_key
        self.rew_key = rew_key
        self.attn_key = attn_key
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        self.extra_key = extra_key
        self.kwargs = kwargs
        self.raw_obs_dim = raw_obs_dim
        self.max_dist = max_dist
        self.mean_dist = mean_dist
        self.std_dist = std_dist
        self.p80, self.p85, self.p90, self.p95, self.p99 = p80, p85, p90, p95, p99
        self.dist_normalizer_value = {'std': std_dist, 'max': max_dist, 'p80': p80, 'p85': p85, 'p90': p90, 'p95': p95, 'p99': p99}[self.dist_normalizer]
        if self.dist_normalizer_value == 0.0: self.dist_normalizer_value = 1.0
        
        # for retrieval,
        all_rows_of_obs_OG, all_attn_masks_OG, all_row_idxs, all_datarows_dict = collect_all_data(dataset, task, obs_key, num_demos, return_datarows_dict=True, atari_dist_type=self.atari_dist_type)
        if task.startswith("babyai"):
            # for each mission in task,
            self.all_indices = {}
            self.knn_index = {}
            for mission_idx, mission in enumerate(all_row_idxs.keys()):
                # create index, collect subset of data that we can retrieve from
                myprint(('*'*50) + f'{mission=} - {mission_idx+1}/{len(all_row_idxs.keys())}')
                self.all_indices[mission], self.knn_index[mission] = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG[mission],
                                                                                        all_attn_masks_OG=all_attn_masks_OG[mission],
                                                                                        all_row_idxs=all_row_idxs[mission],
                                                                                        kwargs=kwargs)
        else:
            # create index, collect subset of data that we can retrieve from
            self.all_indices, self.knn_index = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG,
                                                                  all_attn_masks_OG=all_attn_masks_OG,
                                                                  all_row_idxs=all_row_idxs,
                                                                  kwargs=kwargs)
        
        # for retrieval inside retrieve()
        self.datarows = all_datarows_dict
            

        # # for checking if first env state is similar to retrieval episode's first states
        # if task.startswith("mujoco"):
        #     local_path = f"dataset_jat_regent/{task}"
        #     with open(f"{local_path}/eps_2_rows_tokenized.json", 'r') as f:
        #         eps_2_rows_tokenized = json.load(f)
        #     eps_2_rows_tokenized = {int(k): v for k, v in eps_2_rows_tokenized.items()}
        #     row_idxs_of_first_state_of_demos = [eps_2_rows_tokenized[eps][0] for eps in range(num_demos)]
        #     self.first_states_of_demos = [np.array(dataset['train'][row_idx][obs_key][0]) for row_idx in row_idxs_of_first_state_of_demos]
        # else:
        #     self.first_states_of_demos = None

    def output_rl(
        self,
        transformer_outputs,
        continuous_observations: Optional[FloatTensor] = None,
        discrete_observations: Optional[LongTensor] = None,
        image_observations: Optional[FloatTensor] = None,
        continuous_actions: Optional[FloatTensor] = None,
        discrete_actions: Optional[LongTensor] = None,
        rewards: Optional[FloatTensor] = None,
        attention_mask: Optional[BoolTensor] = None,
        return_loss: bool = True,
        return_dict: Optional[bool] = None,
        loss_weight: Optional[FloatTensor] = None,
        exp_lamda_distances: Optional[FloatTensor] = None,
        continuous_RandP_actions: Optional[FloatTensor] = None,
        discrete_RandP_action_logits: Optional[FloatTensor] = None,
    ):
        hidden_states = transformer_outputs.last_hidden_state
        loss, observation_loss, action_loss = None, None, None
        
        # Observations
        assert rewards is not None
        observations_mask = attention_mask[:, 1::2] if attention_mask is not None else None
        assert self.observation_loss_coef == 0.0, f'{self.observation_loss_coef=} should be 0.0 as we are not predicting observations!'
        # warnings.warn("observation_loss_coef is 0.0, skipping memory-intensive observations prediction.")
        pred_observations = None
        observation_loss = 0.0

        # Actions
        actions_mask = attention_mask[:, ::2] if attention_mask is not None else None
        if continuous_actions is not None:
            act_size = continuous_actions.shape[-1]
            continuous_actions = cyclic_expand_dim(continuous_actions, self.config.max_continuous_size)
            continuous_RandP_actions = cyclic_expand_dim(continuous_RandP_actions, self.config.max_continuous_size)
            init_pred_actions = self.continuous_decoder(hidden_states[:, ::2])
            pred_actions = self.continuous_action_interpolation(init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0)
            if return_loss:
                action_loss = compute_mse_loss(pred_actions, continuous_actions, actions_mask, weights=loss_weight) # loss_weight is usually 50 for metaworld, 10 for mujoco (except two tasks where it is 20, 50), 1 for the rest!
            pred_actions = pred_actions[..., :act_size]
        elif discrete_actions is not None:
            init_pred_actions = self.single_discrete_decoder(hidden_states[:, ::2])
            pred_actions = self.discrete_action_interpolation(init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0)
            if return_loss:
                action_loss = compute_ce_loss_from_softmax(pred_actions, discrete_actions, actions_mask, weights=loss_weight)

        # Return output
        if return_loss:
            loss = self.observation_loss_coef * observation_loss + self.action_loss_coef * action_loss

        if not return_dict:
            output = (pred_observations, pred_actions) + transformer_outputs[1:]
            return ((loss, observation_loss, action_loss) + output) if loss is not None else output

        return JatOutput(
            loss=loss,
            observation_loss=observation_loss,
            action_loss=action_loss,
            pred_observations=pred_observations,
            pred_actions=pred_actions,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
    
    def shifted_crazy_relu(self, x, beta):
        return 2 * crazy_relu(0.5*(x+1), beta) - 1

    def continuous_action_interpolation(self, init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0):
        batch_size, max_seq_len, act_size = init_pred_actions.shape
        assert (init_pred_actions.shape == (batch_size, max_seq_len, act_size) and 
                exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and 
                continuous_RandP_actions.shape == (batch_size, max_seq_len, act_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {continuous_RandP_actions.shape=}, {(batch_size, max_seq_len, act_size)=}'
                
        """ MCNN interpolation (https://arxiv.org/abs/2310.06171) """
        act_fn = self.shifted_crazy_relu
        final_actions = exp_lamda_distances * continuous_RandP_actions + 10.0 * (1 - exp_lamda_distances) * act_fn(init_pred_actions, beta=beta)
        return final_actions
    
    def discrete_action_interpolation(self, init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0):
        batch_size, max_seq_len, action_vocab_size = init_pred_actions.shape
        assert (init_pred_actions.shape == (batch_size, max_seq_len, action_vocab_size) and 
                exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and 
                discrete_RandP_action_logits.shape == (batch_size, max_seq_len, action_vocab_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {discrete_RandP_action_logits.shape=}, {(batch_size, max_seq_len, action_vocab_size)=}'
        
        """ MCNN-like interpolation """
        # print(f'{torch.round(discrete_RandP_action_logits[:, -1],decimals=2)=}')
        # print(f'{torch.round(F.softmax(init_pred_actions, dim=-1)[:, -1],decimals=2)=}')
        # print(f'{torch.round(exp_lamda_distances[:, -1],decimals=2)=}')
        # print(f'first term: {torch.round((exp_lamda_distances * discrete_RandP_action_logits)[:, -1],decimals=2)}')
        # print(f'second term: {torch.round(((1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1))[:, -1],decimals=2)}')
        final_actions = exp_lamda_distances * discrete_RandP_action_logits + (1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1)
        return final_actions
    
    # Copied the forward function from the Parent class with the addition of the last 3 args in the input args and in output_rl args
    def forward(
        self,
        input_ids: Optional[LongTensor] = None,
        pixel_values: Optional[FloatTensor] = None,
        continuous_observations: Optional[FloatTensor] = None,
        discrete_observations: Optional[LongTensor] = None,
        image_observations: Optional[FloatTensor] = None,
        continuous_actions: Optional[FloatTensor] = None,
        discrete_actions: Optional[LongTensor] = None,
        rewards: Optional[FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[FloatTensor]]] = None,
        attention_mask: Optional[BoolTensor] = None,
        token_type_ids: Optional[LongTensor] = None,
        position_ids: Optional[LongTensor] = None,
        return_loss: bool = True,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        loss_weight: Optional[FloatTensor] = None,
        exp_lamda_distances: Optional[FloatTensor] = None,
        continuous_RandP_actions: Optional[FloatTensor] = None,
        discrete_RandP_action_logits: Optional[FloatTensor] = None,
    ) -> JatOutput:
    
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Textual tasks
        if input_ids is not None or pixel_values is not None:
            inputs_embeds, attention_mask = self.embed_textual(input_ids, pixel_values, attention_mask)
        # RL tasks
        elif (
            continuous_observations is not None or discrete_observations is not None or image_observations is not None
        ):
            inputs_embeds, attention_mask = self.embed_rl(
                continuous_observations,
                discrete_observations,
                image_observations,
                continuous_actions,
                discrete_actions,
                rewards,
                attention_mask,
            )
        else:
            raise ValueError("Input not provided.")

        # Pass through transformer
        transformer_outputs = self.transformer(
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if input_ids is not None or pixel_values is not None:
            return self.output_textual(transformer_outputs, input_ids, attention_mask, return_loss, return_dict)
        else:
            return self.output_rl(
                transformer_outputs,
                continuous_observations,
                discrete_observations,
                image_observations,
                continuous_actions,
                discrete_actions,
                rewards,
                attention_mask,
                return_loss,
                return_dict,
                loss_weight,
                exp_lamda_distances,
                continuous_RandP_actions,
                discrete_RandP_action_logits,
            )


    def reset_rl(self):
        self.steps = 0

    def process(
        self,
        processor: JatProcessor,
        continuous_observation: Optional[List[float]] = None,
        discrete_observation: Optional[List[int]] = None,
        text_observation: Optional[str] = None,
        image_observation: Optional[np.ndarray] = None,
        action_space: Union[spaces.Box, spaces.Discrete] = None,
        reward: Optional[float] = None,
        deterministic: bool = True,
        context_window: Optional[int] = None,
    ):
        # Get the maximum sequence length
        max_length = self.config.max_position_embeddings // 2

        # Get the maximum sequence length
        ### see script/train_jat.py > L161. 
        ### None ==> value set to 512 in jat/processing_jat.py > L354 and then // 2 in L355.
        ### weirdly, the value in script/eval_jat.py is set as 256 so it will be // 2 again in L355.
        # max_length = 64 if self.task.startswith("atari") else None 
        
        # Convert everything to lists
        def to_list(x):
            return x.tolist() if isinstance(x, np.ndarray) else x

        continuous_observation = to_list(continuous_observation)
        discrete_observation = to_list(discrete_observation)

        # get babyai mission within task
        if self.task.startswith("babyai"):
            mission = deepcopy(text_observation)
            assert mission in self.knn_index.keys(), f'{mission=} should be in {self.knn_index.keys()=}'

        # Add a fake action to the end of the sequence
        if isinstance(action_space, spaces.Box):
            fake_continuous_action = [0.0 for _ in range(action_space.shape[0])]
            fake_discrete_action = None
        elif isinstance(action_space, spaces.Discrete):
            fake_continuous_action = None
            fake_discrete_action = 0

        continuous_observations = [continuous_observation] if continuous_observation is not None else None
        discrete_observations = [discrete_observation] if discrete_observation is not None else None
        text_observations = [text_observation] if text_observation is not None else None
        image_observations = [image_observation] if image_observation is not None else None
        continuous_actions = [fake_continuous_action] if fake_continuous_action is not None else None
        discrete_actions = [fake_discrete_action] if fake_discrete_action is not None else None
        rewards = [reward] if reward is not None else [0.0]

        # Add the batch dimension
        continuous_observations = [continuous_observations] if continuous_observations is not None else None
        discrete_observations = [discrete_observations] if discrete_observations is not None else None
        text_observations = [text_observations] if text_observations is not None else None
        image_observations = [image_observations] if image_observations is not None else None
        continuous_actions = [continuous_actions] if continuous_actions is not None else None
        discrete_actions = [discrete_actions] if discrete_actions is not None else None
        rewards = [rewards]

        # Process the inputs
        processed = processor(
            continuous_observations=continuous_observations,
            discrete_observations=discrete_observations,
            text_observations=text_observations,
            image_observations=image_observations,
            continuous_actions=continuous_actions,
            discrete_actions=discrete_actions,
            rewards=rewards,
            truncation=True,
            truncation_side="left",
            max_length=max_length,
            return_tensors="pt",
        )

        assert (((self.act_key == 'continuous_actions' and processed[self.act_key].shape == (1, 1, self.act_dim)) or # zeros
                 (self.act_key == 'discrete_actions' and processed[self.act_key].shape == (1, 1))) and
                processed[self.obs_key].shape == (1, 1, *self.raw_obs_dim) and
                processed[self.rew_key].shape == (1, 1)), f'{processed[self.act_key].shape=}, {processed[self.obs_key].shape=}, {processed[self.rew_key].shape=}, {self.act_dim=}, {self.raw_obs_dim=}'

        # save babyai mission
        if self.task.startswith("babyai"):
            processed['mission'] = mission

        # save action_space and deterministic
        processed['action_space'] = action_space
        processed['deterministic'] = deterministic

        return processed

    def retrieve(
        self,
        all_processed: List[dict],
        num_to_retrieve: int,
    ):
        self.steps += 1
        # Set num envs
        num_envs = len(all_processed)

        # Get obs from processed and make batch
        row_of_obs = [all_processed[idx][self.obs_key][0].numpy() for idx in range(num_envs)]
        row_of_obs = np.concatenate(row_of_obs)
        assert row_of_obs.shape == (num_envs, *self.raw_obs_dim) and isinstance(row_of_obs, np.ndarray)
        if self.task.startswith("atari"):
            row_of_obs = process_row_of_obs_atari_full_without_mask(row_of_obs)
            row_of_obs = torch.from_numpy(row_of_obs).to(self.device)
            with torch.no_grad():
                row_of_obs = self.emb_model(self.emb_transform(row_of_obs)).cpu().numpy()
        elif self.task.startswith("babyai"):
            row_of_obs = row_of_obs[:, :148] # removing last 64 text tokens
        assert row_of_obs.shape == (num_envs, *self.obs_dim) and isinstance(row_of_obs, np.ndarray)

        # Retrieve indices
        if self.task.startswith("babyai"):
            retrieved_indices = []
            for idx in range(num_envs):
                mission = all_processed[idx]['mission']
                retrieved_indices_mission = retrieve_vector(row_of_obs=row_of_obs[idx:idx+1],
                                                            knn_index=self.knn_index[mission], 
                                                            all_indices=self.all_indices[mission], 
                                                            num_to_retrieve=num_to_retrieve,
                                                            kwargs=self.kwargs)
                retrieved_indices.append(retrieved_indices_mission) # appending (1, 1, 2)
            retrieved_indices = np.concatenate(retrieved_indices, axis=0)
            assert retrieved_indices.shape == (num_envs, num_to_retrieve, 2)
        else:
            retrieved_indices = retrieve_vector(row_of_obs=row_of_obs, 
                                                knn_index=self.knn_index, 
                                                all_indices=self.all_indices, 
                                                num_to_retrieve=num_to_retrieve,
                                                kwargs=self.kwargs)

        # Return action
        all_retrieved_act = []
        all_retrieved_obs = []
        all_retrieved_rew = []
        env_idx = 0
        for all_row_idx_and_i in retrieved_indices:
            all_retrieved_act.append([])
            all_retrieved_obs.append([])
            all_retrieved_rew.append([])
            for row_idx, i in all_row_idx_and_i:
                if self.task.startswith("babyai"):
                    mission = all_processed[env_idx]['mission']
                    datarow = self.datarows[mission][int(row_idx)]
                else:
                    datarow = self.datarows[int(row_idx)]
                temp_a = datarow[self.act_key][int(i)]
                if self.task.startswith("atari") and self.use_global_atari_actions:
                    temp_a = convert_local_to_global_action( temp_a, self.task )
                all_retrieved_act[-1].append(temp_a)
                all_retrieved_obs[-1].append(datarow[self.obs_key][int(i)])
                all_retrieved_rew[-1].append(datarow[self.rew_key][int(i)])
            env_idx += 1

        return all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs
    
    def get_distances(
        self,
        all_retrieved_obs: np.ndarray,
        all_processed: List[dict],
        query_obs: np.ndarray,
    ):
        num_envs = len(all_processed)

        # Process retrieved obs like in retrieve
        num_contexts = all_retrieved_obs.shape[1] + 1
        assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim) and isinstance(all_retrieved_obs, np.ndarray)
        if self.task.startswith("atari"):
            all_retrieved_obs = all_retrieved_obs.reshape(num_envs * (num_contexts - 1), *self.raw_obs_dim)
            all_retrieved_obs = process_row_of_obs_atari_full_without_mask(all_retrieved_obs)
            all_retrieved_obs = torch.from_numpy(all_retrieved_obs).to(self.device)
            with torch.no_grad():
                all_retrieved_obs = self.emb_model(self.emb_transform(all_retrieved_obs)).cpu().numpy()
            all_retrieved_obs = all_retrieved_obs.reshape(num_envs, num_contexts - 1, *self.obs_dim)
        elif self.task.startswith("babyai"):
            all_retrieved_obs = all_retrieved_obs[:, :, :148]
        assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.obs_dim) and isinstance(all_retrieved_obs, np.ndarray)

        # Compute distances
        all_distances = []
        for idx in range(num_envs):
            first_state = all_retrieved_obs[idx, 0:1]
            distances = [0.0]
            for i in range(1, num_contexts - 1):
                curr_state = all_retrieved_obs[idx, i:i+1]
                dist = L2dist(first_state, curr_state)
                distances.append(dist)
            curr_state = query_obs[idx:idx+1]
            dist = L2dist(first_state, curr_state)
            distances.append(dist)
            all_distances.append(distances)
        all_distances = np.array(all_distances)
        assert all_distances.shape == (num_envs, num_contexts), f'{all_distances.shape=}, {num_envs=}, {num_contexts=}'

        # distances: divide by std
        all_distances = all_distances / self.dist_normalizer_value
        if self.task.startswith("mujoco"):
            all_distances = all_distances * self.dist_multipliers['mujoco']
        elif self.task.startswith("atari"):
            all_distances = all_distances * self.dist_multipliers['atari']
        print(f'{self.dist_normalizer_value=}')
        print(f'{all_distances=}')
        
        return all_distances
    
    @torch.no_grad()
    def get_next_action(
        self,
        all_processed: List[dict],
        return_retrieved_obs: bool = False,
    ):
        num_envs = len(all_processed)
        num_contexts = self.num_contexts

        # Get the retrieved data
        all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs = self.retrieve(all_processed, num_to_retrieve=num_contexts - 1)
        if return_retrieved_obs:
            all_retrieved_images = get_images_of_retrieved_obs(deepcopy(all_retrieved_obs), self.task)

        # Get the distances
        all_retrieved_obs = np.stack(all_retrieved_obs).astype(np.int32 if self.obs_key == 'discrete_observations' else np.float32)
        assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim), f'{all_retrieved_obs.shape=}, {num_envs=}, {self.raw_obs_dim=}, {num_contexts-1=}'
        all_distances = self.get_distances(all_retrieved_obs=all_retrieved_obs, all_processed=all_processed, query_obs=row_of_obs)

        # Batch retrieved data
        all_retrieved_act = np.stack(all_retrieved_act).astype(np.int32 if self.act_key == 'discrete_actions' else np.float32)
        all_retrieved_rew = np.stack(all_retrieved_rew).astype(np.float32)
        assert (((self.act_key == 'continuous_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1, self.act_dim)) or 
                 (self.act_key == 'discrete_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1))) and
                all_retrieved_rew.shape == (num_envs, num_contexts - 1)), f'{all_retrieved_act.shape=}, {all_retrieved_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}, {num_contexts-1=}'

        # Batch query data (already tensors) # query data is already int32/float32 after processing
        all_query_act = torch.stack([all_processed[idx][self.act_key][0] for idx in range(num_envs)])
        all_query_obs = np.stack([all_processed[idx][self.obs_key][0] for idx in range(num_envs)])
        all_query_rew = torch.stack([all_processed[idx][self.rew_key][0] for idx in range(num_envs)])
        assert (((self.act_key == 'continuous_actions' and all_query_act.shape == (num_envs, 1, self.act_dim)) or 
                 (self.act_key == 'discrete_actions' and all_query_act.shape == (num_envs, 1))) and
                all_query_obs.shape == (num_envs, 1, *self.raw_obs_dim) and
                all_query_rew.shape == (num_envs, 1)), f'{all_query_act.shape=}, {all_query_obs.shape=}, {all_query_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}'

        # Collect attn
        attn_weights = np.ones((num_envs, num_contexts)).astype(np.float32)
        
        # Compute exp_lamda_distances
        exp_lamda_distances = np.exp(-self.lamda * all_distances)[:, :, np.newaxis]
        assert exp_lamda_distances.shape == (num_envs, num_contexts, 1), f'{exp_lamda_distances.shape=}, {num_envs=}, {num_contexts=}'

        # Compute extra_key
        all_extra_key = []
        for idx in range(num_envs):
            RandP_action = all_retrieved_act[idx, 0]
            if self.extra_key == 'continuous_RandP_actions':
                extra_key = [RandP_action for _ in range(num_contexts)]
            elif self.extra_key == 'discrete_RandP_action_logits':
                extra_key = []
                for d in all_distances[idx]:
                    d = min(1.0, max(0.0, d))
                    curr_logits = [1.0/self.N * d for _ in range(self.N)]
                    curr_logits[RandP_action] = (1.0 + (self.N - 1.0)*(1.0 - d))/self.N
                    extra_key.append(curr_logits)
            extra_key = np.stack(extra_key)
            all_extra_key.append(extra_key)
        all_extra_key = np.stack(all_extra_key).astype(np.float32)
        
        if self.extra_key == 'continuous_RandP_actions':
            assert all_extra_key.shape == (num_envs, num_contexts, self.act_dim), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.act_dim=}'
        elif self.extra_key == 'discrete_RandP_action_logits':
            assert all_extra_key.shape == (num_envs, num_contexts, self.N), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.N=}'

        # Tensorify
        all_retrieved_act = torch.from_numpy(all_retrieved_act)
        all_retrieved_rew = torch.from_numpy(all_retrieved_rew)
        attn_weights = torch.from_numpy(attn_weights).to(self.device)
        exp_lamda_distances = torch.from_numpy(exp_lamda_distances).to(self.device)
        all_extra_key = torch.from_numpy(all_extra_key).to(self.device)

        # Concat retrieved and query batches
        all_act = torch.cat([all_retrieved_act, all_query_act], dim=1).to(self.device)
        all_obs = np.concatenate([all_retrieved_obs, all_query_obs], axis=1)
        if self.use_atari_embeddings and self.task.startswith("atari"):
            all_obs = all_obs.reshape(num_envs * num_contexts, *self.raw_obs_dim)
            all_obs = process_row_of_obs_atari_full_without_mask(all_obs)
            all_obs = torch.from_numpy(all_obs).to(self.device)
            with torch.no_grad():
                all_obs = self.emb_model_full(self.emb_transform(all_obs)).reshape(num_envs, num_contexts, *self.emb_dim_full)
        else:
            all_obs = torch.from_numpy(all_obs).to(self.device)
        all_rew = torch.cat([all_retrieved_rew, all_query_rew], dim=1).to(self.device)
        
        # Collect action_space, deterministic from all_processed
        all_action_space = [all_processed[idx]['action_space'] for idx in range(num_envs)]
        all_deterministic = [all_processed[idx]['deterministic'] for idx in range(num_envs)]
        ## assert that all action_space and deterministic are same for all envs
        assert all([action_space == all_action_space[0] for action_space in all_action_space]), f'{all_action_space=}'
        assert all([deterministic == all_deterministic[0] for deterministic in all_deterministic]), f'{all_deterministic=}'
        ## then just use first one!
        action_space = all_action_space[0]
        deterministic = all_deterministic[0]        

        # Forward pass
        if self.use_atari_embeddings and self.task.startswith("atari"):
            final_obs_key = 'continuous_observations'
        else:
            final_obs_key = self.obs_key
        outputs = self.forward(**{final_obs_key: all_obs, 
                                  self.act_key: all_act, 
                                  self.rew_key: all_rew,
                                  self.attn_key: attn_weights,
                                  'exp_lamda_distances': exp_lamda_distances,
                                  self.extra_key: all_extra_key,
                                }, return_loss=False)

        # Return the predicted action
        if self.act_key == 'continuous_actions':
            self.last_continuous_action = outputs.pred_actions[:, -1].cpu().numpy()
            
            assert self.last_continuous_action.shape == (num_envs, self.act_dim), f'{self.last_continuous_action.shape=}, {num_envs=}, {self.act_dim=}'
            
            myprint(f'L2dist(RandP action, Pred action): {[L2dist(all_retrieved_act[idx, 0].cpu().numpy(), self.last_continuous_action[idx]) for idx in range(num_envs)]}')
            self.last_continuous_action = list(self.last_continuous_action) # list of arrays
            return self.last_continuous_action if not return_retrieved_obs else (self.last_continuous_action, all_retrieved_images)

        elif self.act_key == 'discrete_actions':
            act_n = self.config.action_vocab_size if (self.task.startswith('atari') and self.use_global_atari_actions) else action_space.n
            logits = outputs.pred_actions[:, -1, : act_n]
            assert logits.shape == (num_envs, act_n), f'{logits.shape=}, {num_envs=}, {act_n=}'
            if deterministic:
                # myprint(f'{all_extra_key[:, -1, : action_space.n]=}')
                # myprint(f'{logits=}')
                self.last_discrete_action = logits.argmax(dim=-1, keepdim=True).cpu().numpy().reshape(-1)
            else:  # sample
                self.last_discrete_action = torch.multinomial(logits.softmax(dim=-1), num_samples=1).cpu().numpy().reshape(-1)
            
            assert self.last_discrete_action.shape == (num_envs,), f'{self.last_discrete_action.shape=}, {num_envs=}'

            self.last_discrete_action = list(self.last_discrete_action) # list of ints
            myprint(f'RandP action: {all_retrieved_act[:, 0].cpu().numpy().tolist()} vs Pred action: {self.last_discrete_action}')

            if self.task.startswith("atari") and self.use_global_atari_actions:
                self.last_discrete_action = [convert_global_to_local_action(a, self.task) for a in self.last_discrete_action]
                myprint(f'[IN LOCAL ACTION] RandP action: {[convert_global_to_local_action(a, self.task) for a in all_retrieved_act[:, 0].cpu().numpy().tolist()]} vs Pred action: {self.last_discrete_action}')
                myprint(f'[IN LOCAL ACTION] diff: {[convert_global_to_local_action(a, self.task) - b for a, b in zip(all_retrieved_act[:, 0].cpu().numpy().tolist(), self.last_discrete_action)]}')

            return self.last_discrete_action if not return_retrieved_obs else (self.last_discrete_action, all_retrieved_images)


JatRegentModel.register_for_auto_class("AutoModelForCausalLM")