import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from gymnasium import spaces from torch import BoolTensor, FloatTensor, LongTensor, Tensor, nn from transformers import GPTNeoModel, GPTNeoPreTrainedModel from transformers.modeling_outputs import ModelOutput from transformers.models.vit.modeling_vit import ViTPatchEmbeddings import torch.nn.functional as F from jat.configuration_jat import JatConfig from jat.processing_jat import JatProcessor from jat.modeling_jat import JatModel, compute_mse_loss, cyclic_expand_dim, JatOutput from regent.utils import build_index_vector, get_task_info, collect_all_data, process_row_of_obs_atari_full_without_mask, retrieve_vector, myprint, L2dist, get_dist_stats, get_images_of_retrieved_obs, get_emb_transform_model_dim, get_optional_suffix from regent.atari_utils import convert_local_to_global_action, convert_global_to_local_action from regent.eval.rl import SEEN_TASK_NAME_TO_ENV_ID, UNSEEN_TASK_NAME_TO_ENV_ID from PIL import Image import os from copy import deepcopy from pytorch_msssim import ssim import json def cross_entropy_from_softmax(softmax_probs, targets, reduction="mean", epsilon=1e-9): """ Calculate the cross entropy loss given softmax_probs and targets. :param softmax_probs: tensor containing softmax probabilities :param targets: tensor containing the target classes (not one-hot encoded) :return: cross entropy loss """ assert len(softmax_probs.shape) == 2, "softmax_probs should be of shape (batch_size, num_classes)" assert len(targets.shape) == 1, "targets should be of shape (batch_size,)" # Convert targets to one-hot encoding targets_one_hot = F.one_hot(targets, num_classes=softmax_probs.shape[1]).float() # shape: (batch_size, num_classes) # Calculate the cross entropy loss softmax_probs = softmax_probs.clamp(min=epsilon, max=1-epsilon) # to avoid NaNs from log(0) and instabilities from log(1) log_softmax_probs = softmax_probs.log() # safe to take log as softmax_probs are non-zero loss = -torch.sum(targets_one_hot * log_softmax_probs, dim=1) if reduction == "mean": return loss.mean() elif reduction == "sum": return loss.sum() elif reduction == "none": return loss else: raise ValueError("reduction should be one of 'mean', 'sum', or 'none'") def compute_ce_loss_from_softmax( logits: FloatTensor, labels: torch.LongTensor, mask: Optional[BoolTensor], weights: Optional[FloatTensor] = None ) -> FloatTensor: """ Compute the Cross Entropy (CE) loss between predicted logits and true class labels, considering valid timesteps. Args: logits (`FloatTensor` of shape `(batch_size, max_seq_len, [inner_size,] num_classes)`): Predicted logits at the output of the model. labels (`torch.LongTensor` of shape `(batch_size, max_seq_len, [inner_size,])`): Ground truth class labels. mask (`BoolTensor` of shape `(batch_size, max_seq_len)`, *optional*): Boolean mask indicating valid timesteps. weights (`FloatTensor` of shape `(batch_size, max_seq_len)`, *optional*): Weights to be applied to the loss. Returns: loss (`FloatTensor` of shape `(,)`): CE loss between predicted logits and true class labels. """ if mask is not None: logits = logits[mask.bool()] # (Y, X, C) labels = labels[mask.bool()] # (Y, X) if weights is not None: weights = weights[mask.bool()] # (Y,) else: logits = logits.flatten(end_dim=2) # (B, L, X, C) -> (B*L, X, C) labels = labels.flatten(end_dim=1) # (B, L, X) -> (B*L, X) if weights is not None: weights = weights.flatten(end_dim=1) # (B, L) -> (B*L,) loss = cross_entropy_from_softmax(logits.view(-1, logits.size(-1)), labels.view(-1), reduction="none") # (Y*X,) # we don't use F.cross_entropy here to avoid double softmax loss = loss.view(labels.size()) # (Y, X) loss = loss.mean(-1) # (Y,) # Multiply the loss by the weights if weights is not None: loss = loss * weights # (Y,) # Average the loss loss = loss.mean() return loss def crazy_relu(x, beta): return nn.LeakyReLU(beta)(x) - (1-beta) * nn.ReLU()(x-1) class JatRegentModel(JatModel): """ Jat Regent model. """ def __init__(self, config: JatConfig) -> None: super().__init__(config) hidden_size = config.hidden_size action_vocab_size = config.action_vocab_size if config.ONLY_RL_TASKS: self.single_discrete_decoder = nn.Linear(hidden_size, action_vocab_size, bias=False) self.N = config.action_vocab_size else: self.N = config.vocab_size self.multi_discrete_decoder = None # not needed self.image_decoder = None # not needed self.num_contexts = config.num_contexts # used in get_next_action() at evaluation in an env only self.lamda = config.lamda # used in get_next_action() at evaluation in an env only self.use_global_atari_actions = config.use_global_atari_actions self.dist_multipliers = {'mujoco': config.mujoco_dist_multiplier, 'atari': config.atari_dist_multiplier} self.dist_normalizer = config.dist_normalizer self.atari_dist_type = config.atari_dist_type self.use_atari_embeddings = config.use_atari_embeddings self.finetune_num_demos = config.finetune_num_demos if hasattr(config, 'finetune_num_demos') else None if self.use_atari_embeddings: self.image_encoder = None self.emb_dim_full = (512,) # print number of parameters num_params = sum(p.numel() for p in self.parameters() if p.requires_grad) myprint(f"number of parameters: {num_params / 1e6:.4f}M") def retrieval_setup(self, task, dataset, num_demos, # to retrieve from device, batch_size_retrieval=16, # for atari envs on gpu nb_cores_autofaiss=8, # for vector obs envs on cpu cores ): # setup rew_key, attn_key, obs_key, act_key, B, obs_dim, act_dim = get_task_info(task) extra_key = 'discrete_RandP_action_logits' if task.startswith("atari") or task.startswith("babyai") else 'continuous_RandP_actions' optional_suffix = get_optional_suffix(task, self.atari_dist_type, self.finetune_num_demos) mean_dist, std_dist, max_dist, p80, p85, p90, p95, p99 = get_dist_stats(task=task, optional_suffix=optional_suffix) # get embedding model if task.startswith("atari"): self.emb_transform, self.emb_model, emb_dim, self.emb_model_full = get_emb_transform_model_dim(self.atari_dist_type, self.device, return_emb_weights=True) obs_dim = emb_dim # overwrite for atari_dist_type kwargs = {'B': B, 'obs_dim': obs_dim, 'attn_key': attn_key, 'obs_key': obs_key, 'device': device, 'task': task, 'batch_size_retrieval': batch_size_retrieval, 'nb_cores_autofaiss': nb_cores_autofaiss, 'verbose': False, 'atari_dist_type': self.atari_dist_type, } raw_obs_dim = obs_dim if task.startswith("atari"): # overwrite raw_obs_dim because raw obs in atari are (4, 84, 84) and raw obs in babyai have 64 extra dim raw_obs_dim = (4, 84, 84) elif task.startswith("babyai"): raw_obs_dim = (obs_dim[0]+64,) # save self.task = task self.dataset = dataset self.obs_key = obs_key self.act_key = act_key self.rew_key = rew_key self.attn_key = attn_key self.obs_dim = obs_dim self.act_dim = act_dim self.extra_key = extra_key self.kwargs = kwargs self.raw_obs_dim = raw_obs_dim self.max_dist = max_dist self.mean_dist = mean_dist self.std_dist = std_dist self.p80, self.p85, self.p90, self.p95, self.p99 = p80, p85, p90, p95, p99 self.dist_normalizer_value = {'std': std_dist, 'max': max_dist, 'p80': p80, 'p85': p85, 'p90': p90, 'p95': p95, 'p99': p99}[self.dist_normalizer] if self.dist_normalizer_value == 0.0: self.dist_normalizer_value = 1.0 # for retrieval, all_rows_of_obs_OG, all_attn_masks_OG, all_row_idxs, all_datarows_dict = collect_all_data(dataset, task, obs_key, num_demos, return_datarows_dict=True, atari_dist_type=self.atari_dist_type) if task.startswith("babyai"): # for each mission in task, self.all_indices = {} self.knn_index = {} for mission_idx, mission in enumerate(all_row_idxs.keys()): # create index, collect subset of data that we can retrieve from myprint(('*'*50) + f'{mission=} - {mission_idx+1}/{len(all_row_idxs.keys())}') self.all_indices[mission], self.knn_index[mission] = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG[mission], all_attn_masks_OG=all_attn_masks_OG[mission], all_row_idxs=all_row_idxs[mission], kwargs=kwargs) else: # create index, collect subset of data that we can retrieve from self.all_indices, self.knn_index = build_index_vector(all_rows_of_obs_OG=all_rows_of_obs_OG, all_attn_masks_OG=all_attn_masks_OG, all_row_idxs=all_row_idxs, kwargs=kwargs) # for retrieval inside retrieve() self.datarows = all_datarows_dict # # for checking if first env state is similar to retrieval episode's first states # if task.startswith("mujoco"): # local_path = f"dataset_jat_regent/{task}" # with open(f"{local_path}/eps_2_rows_tokenized.json", 'r') as f: # eps_2_rows_tokenized = json.load(f) # eps_2_rows_tokenized = {int(k): v for k, v in eps_2_rows_tokenized.items()} # row_idxs_of_first_state_of_demos = [eps_2_rows_tokenized[eps][0] for eps in range(num_demos)] # self.first_states_of_demos = [np.array(dataset['train'][row_idx][obs_key][0]) for row_idx in row_idxs_of_first_state_of_demos] # else: # self.first_states_of_demos = None def output_rl( self, transformer_outputs, continuous_observations: Optional[FloatTensor] = None, discrete_observations: Optional[LongTensor] = None, image_observations: Optional[FloatTensor] = None, continuous_actions: Optional[FloatTensor] = None, discrete_actions: Optional[LongTensor] = None, rewards: Optional[FloatTensor] = None, attention_mask: Optional[BoolTensor] = None, return_loss: bool = True, return_dict: Optional[bool] = None, loss_weight: Optional[FloatTensor] = None, exp_lamda_distances: Optional[FloatTensor] = None, continuous_RandP_actions: Optional[FloatTensor] = None, discrete_RandP_action_logits: Optional[FloatTensor] = None, ): hidden_states = transformer_outputs.last_hidden_state loss, observation_loss, action_loss = None, None, None # Observations assert rewards is not None observations_mask = attention_mask[:, 1::2] if attention_mask is not None else None assert self.observation_loss_coef == 0.0, f'{self.observation_loss_coef=} should be 0.0 as we are not predicting observations!' # warnings.warn("observation_loss_coef is 0.0, skipping memory-intensive observations prediction.") pred_observations = None observation_loss = 0.0 # Actions actions_mask = attention_mask[:, ::2] if attention_mask is not None else None if continuous_actions is not None: act_size = continuous_actions.shape[-1] continuous_actions = cyclic_expand_dim(continuous_actions, self.config.max_continuous_size) continuous_RandP_actions = cyclic_expand_dim(continuous_RandP_actions, self.config.max_continuous_size) init_pred_actions = self.continuous_decoder(hidden_states[:, ::2]) pred_actions = self.continuous_action_interpolation(init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0) if return_loss: action_loss = compute_mse_loss(pred_actions, continuous_actions, actions_mask, weights=loss_weight) # loss_weight is usually 50 for metaworld, 10 for mujoco (except two tasks where it is 20, 50), 1 for the rest! pred_actions = pred_actions[..., :act_size] elif discrete_actions is not None: init_pred_actions = self.single_discrete_decoder(hidden_states[:, ::2]) pred_actions = self.discrete_action_interpolation(init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0) if return_loss: action_loss = compute_ce_loss_from_softmax(pred_actions, discrete_actions, actions_mask, weights=loss_weight) # Return output if return_loss: loss = self.observation_loss_coef * observation_loss + self.action_loss_coef * action_loss if not return_dict: output = (pred_observations, pred_actions) + transformer_outputs[1:] return ((loss, observation_loss, action_loss) + output) if loss is not None else output return JatOutput( loss=loss, observation_loss=observation_loss, action_loss=action_loss, pred_observations=pred_observations, pred_actions=pred_actions, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def shifted_crazy_relu(self, x, beta): return 2 * crazy_relu(0.5*(x+1), beta) - 1 def continuous_action_interpolation(self, init_pred_actions, exp_lamda_distances, continuous_RandP_actions, beta=0.0): batch_size, max_seq_len, act_size = init_pred_actions.shape assert (init_pred_actions.shape == (batch_size, max_seq_len, act_size) and exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and continuous_RandP_actions.shape == (batch_size, max_seq_len, act_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {continuous_RandP_actions.shape=}, {(batch_size, max_seq_len, act_size)=}' """ MCNN interpolation (https://arxiv.org/abs/2310.06171) """ act_fn = self.shifted_crazy_relu final_actions = exp_lamda_distances * continuous_RandP_actions + 10.0 * (1 - exp_lamda_distances) * act_fn(init_pred_actions, beta=beta) return final_actions def discrete_action_interpolation(self, init_pred_actions, exp_lamda_distances, discrete_RandP_action_logits, beta=0.0): batch_size, max_seq_len, action_vocab_size = init_pred_actions.shape assert (init_pred_actions.shape == (batch_size, max_seq_len, action_vocab_size) and exp_lamda_distances.shape == (batch_size, max_seq_len, 1) and discrete_RandP_action_logits.shape == (batch_size, max_seq_len, action_vocab_size)), f'{init_pred_actions.shape=}, {exp_lamda_distances.shape=}, {discrete_RandP_action_logits.shape=}, {(batch_size, max_seq_len, action_vocab_size)=}' """ MCNN-like interpolation """ # print(f'{torch.round(discrete_RandP_action_logits[:, -1],decimals=2)=}') # print(f'{torch.round(F.softmax(init_pred_actions, dim=-1)[:, -1],decimals=2)=}') # print(f'{torch.round(exp_lamda_distances[:, -1],decimals=2)=}') # print(f'first term: {torch.round((exp_lamda_distances * discrete_RandP_action_logits)[:, -1],decimals=2)}') # print(f'second term: {torch.round(((1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1))[:, -1],decimals=2)}') final_actions = exp_lamda_distances * discrete_RandP_action_logits + (1 - exp_lamda_distances) * F.softmax(init_pred_actions, dim=-1) return final_actions # Copied the forward function from the Parent class with the addition of the last 3 args in the input args and in output_rl args def forward( self, input_ids: Optional[LongTensor] = None, pixel_values: Optional[FloatTensor] = None, continuous_observations: Optional[FloatTensor] = None, discrete_observations: Optional[LongTensor] = None, image_observations: Optional[FloatTensor] = None, continuous_actions: Optional[FloatTensor] = None, discrete_actions: Optional[LongTensor] = None, rewards: Optional[FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[FloatTensor]]] = None, attention_mask: Optional[BoolTensor] = None, token_type_ids: Optional[LongTensor] = None, position_ids: Optional[LongTensor] = None, return_loss: bool = True, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, loss_weight: Optional[FloatTensor] = None, exp_lamda_distances: Optional[FloatTensor] = None, continuous_RandP_actions: Optional[FloatTensor] = None, discrete_RandP_action_logits: Optional[FloatTensor] = None, ) -> JatOutput: return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Textual tasks if input_ids is not None or pixel_values is not None: inputs_embeds, attention_mask = self.embed_textual(input_ids, pixel_values, attention_mask) # RL tasks elif ( continuous_observations is not None or discrete_observations is not None or image_observations is not None ): inputs_embeds, attention_mask = self.embed_rl( continuous_observations, discrete_observations, image_observations, continuous_actions, discrete_actions, rewards, attention_mask, ) else: raise ValueError("Input not provided.") # Pass through transformer transformer_outputs = self.transformer( past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if input_ids is not None or pixel_values is not None: return self.output_textual(transformer_outputs, input_ids, attention_mask, return_loss, return_dict) else: return self.output_rl( transformer_outputs, continuous_observations, discrete_observations, image_observations, continuous_actions, discrete_actions, rewards, attention_mask, return_loss, return_dict, loss_weight, exp_lamda_distances, continuous_RandP_actions, discrete_RandP_action_logits, ) def reset_rl(self): self.steps = 0 def process( self, processor: JatProcessor, continuous_observation: Optional[List[float]] = None, discrete_observation: Optional[List[int]] = None, text_observation: Optional[str] = None, image_observation: Optional[np.ndarray] = None, action_space: Union[spaces.Box, spaces.Discrete] = None, reward: Optional[float] = None, deterministic: bool = True, context_window: Optional[int] = None, ): # Get the maximum sequence length max_length = self.config.max_position_embeddings // 2 # Get the maximum sequence length ### see script/train_jat.py > L161. ### None ==> value set to 512 in jat/processing_jat.py > L354 and then // 2 in L355. ### weirdly, the value in script/eval_jat.py is set as 256 so it will be // 2 again in L355. # max_length = 64 if self.task.startswith("atari") else None # Convert everything to lists def to_list(x): return x.tolist() if isinstance(x, np.ndarray) else x continuous_observation = to_list(continuous_observation) discrete_observation = to_list(discrete_observation) # get babyai mission within task if self.task.startswith("babyai"): mission = deepcopy(text_observation) assert mission in self.knn_index.keys(), f'{mission=} should be in {self.knn_index.keys()=}' # Add a fake action to the end of the sequence if isinstance(action_space, spaces.Box): fake_continuous_action = [0.0 for _ in range(action_space.shape[0])] fake_discrete_action = None elif isinstance(action_space, spaces.Discrete): fake_continuous_action = None fake_discrete_action = 0 continuous_observations = [continuous_observation] if continuous_observation is not None else None discrete_observations = [discrete_observation] if discrete_observation is not None else None text_observations = [text_observation] if text_observation is not None else None image_observations = [image_observation] if image_observation is not None else None continuous_actions = [fake_continuous_action] if fake_continuous_action is not None else None discrete_actions = [fake_discrete_action] if fake_discrete_action is not None else None rewards = [reward] if reward is not None else [0.0] # Add the batch dimension continuous_observations = [continuous_observations] if continuous_observations is not None else None discrete_observations = [discrete_observations] if discrete_observations is not None else None text_observations = [text_observations] if text_observations is not None else None image_observations = [image_observations] if image_observations is not None else None continuous_actions = [continuous_actions] if continuous_actions is not None else None discrete_actions = [discrete_actions] if discrete_actions is not None else None rewards = [rewards] # Process the inputs processed = processor( continuous_observations=continuous_observations, discrete_observations=discrete_observations, text_observations=text_observations, image_observations=image_observations, continuous_actions=continuous_actions, discrete_actions=discrete_actions, rewards=rewards, truncation=True, truncation_side="left", max_length=max_length, return_tensors="pt", ) assert (((self.act_key == 'continuous_actions' and processed[self.act_key].shape == (1, 1, self.act_dim)) or # zeros (self.act_key == 'discrete_actions' and processed[self.act_key].shape == (1, 1))) and processed[self.obs_key].shape == (1, 1, *self.raw_obs_dim) and processed[self.rew_key].shape == (1, 1)), f'{processed[self.act_key].shape=}, {processed[self.obs_key].shape=}, {processed[self.rew_key].shape=}, {self.act_dim=}, {self.raw_obs_dim=}' # save babyai mission if self.task.startswith("babyai"): processed['mission'] = mission # save action_space and deterministic processed['action_space'] = action_space processed['deterministic'] = deterministic return processed def retrieve( self, all_processed: List[dict], num_to_retrieve: int, ): self.steps += 1 # Set num envs num_envs = len(all_processed) # Get obs from processed and make batch row_of_obs = [all_processed[idx][self.obs_key][0].numpy() for idx in range(num_envs)] row_of_obs = np.concatenate(row_of_obs) assert row_of_obs.shape == (num_envs, *self.raw_obs_dim) and isinstance(row_of_obs, np.ndarray) if self.task.startswith("atari"): row_of_obs = process_row_of_obs_atari_full_without_mask(row_of_obs) row_of_obs = torch.from_numpy(row_of_obs).to(self.device) with torch.no_grad(): row_of_obs = self.emb_model(self.emb_transform(row_of_obs)).cpu().numpy() elif self.task.startswith("babyai"): row_of_obs = row_of_obs[:, :148] # removing last 64 text tokens assert row_of_obs.shape == (num_envs, *self.obs_dim) and isinstance(row_of_obs, np.ndarray) # Retrieve indices if self.task.startswith("babyai"): retrieved_indices = [] for idx in range(num_envs): mission = all_processed[idx]['mission'] retrieved_indices_mission = retrieve_vector(row_of_obs=row_of_obs[idx:idx+1], knn_index=self.knn_index[mission], all_indices=self.all_indices[mission], num_to_retrieve=num_to_retrieve, kwargs=self.kwargs) retrieved_indices.append(retrieved_indices_mission) # appending (1, 1, 2) retrieved_indices = np.concatenate(retrieved_indices, axis=0) assert retrieved_indices.shape == (num_envs, num_to_retrieve, 2) else: retrieved_indices = retrieve_vector(row_of_obs=row_of_obs, knn_index=self.knn_index, all_indices=self.all_indices, num_to_retrieve=num_to_retrieve, kwargs=self.kwargs) # Return action all_retrieved_act = [] all_retrieved_obs = [] all_retrieved_rew = [] env_idx = 0 for all_row_idx_and_i in retrieved_indices: all_retrieved_act.append([]) all_retrieved_obs.append([]) all_retrieved_rew.append([]) for row_idx, i in all_row_idx_and_i: if self.task.startswith("babyai"): mission = all_processed[env_idx]['mission'] datarow = self.datarows[mission][int(row_idx)] else: datarow = self.datarows[int(row_idx)] temp_a = datarow[self.act_key][int(i)] if self.task.startswith("atari") and self.use_global_atari_actions: temp_a = convert_local_to_global_action( temp_a, self.task ) all_retrieved_act[-1].append(temp_a) all_retrieved_obs[-1].append(datarow[self.obs_key][int(i)]) all_retrieved_rew[-1].append(datarow[self.rew_key][int(i)]) env_idx += 1 return all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs def get_distances( self, all_retrieved_obs: np.ndarray, all_processed: List[dict], query_obs: np.ndarray, ): num_envs = len(all_processed) # Process retrieved obs like in retrieve num_contexts = all_retrieved_obs.shape[1] + 1 assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim) and isinstance(all_retrieved_obs, np.ndarray) if self.task.startswith("atari"): all_retrieved_obs = all_retrieved_obs.reshape(num_envs * (num_contexts - 1), *self.raw_obs_dim) all_retrieved_obs = process_row_of_obs_atari_full_without_mask(all_retrieved_obs) all_retrieved_obs = torch.from_numpy(all_retrieved_obs).to(self.device) with torch.no_grad(): all_retrieved_obs = self.emb_model(self.emb_transform(all_retrieved_obs)).cpu().numpy() all_retrieved_obs = all_retrieved_obs.reshape(num_envs, num_contexts - 1, *self.obs_dim) elif self.task.startswith("babyai"): all_retrieved_obs = all_retrieved_obs[:, :, :148] assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.obs_dim) and isinstance(all_retrieved_obs, np.ndarray) # Compute distances all_distances = [] for idx in range(num_envs): first_state = all_retrieved_obs[idx, 0:1] distances = [0.0] for i in range(1, num_contexts - 1): curr_state = all_retrieved_obs[idx, i:i+1] dist = L2dist(first_state, curr_state) distances.append(dist) curr_state = query_obs[idx:idx+1] dist = L2dist(first_state, curr_state) distances.append(dist) all_distances.append(distances) all_distances = np.array(all_distances) assert all_distances.shape == (num_envs, num_contexts), f'{all_distances.shape=}, {num_envs=}, {num_contexts=}' # distances: divide by std all_distances = all_distances / self.dist_normalizer_value if self.task.startswith("mujoco"): all_distances = all_distances * self.dist_multipliers['mujoco'] elif self.task.startswith("atari"): all_distances = all_distances * self.dist_multipliers['atari'] print(f'{self.dist_normalizer_value=}') print(f'{all_distances=}') return all_distances @torch.no_grad() def get_next_action( self, all_processed: List[dict], return_retrieved_obs: bool = False, ): num_envs = len(all_processed) num_contexts = self.num_contexts # Get the retrieved data all_retrieved_act, all_retrieved_obs, all_retrieved_rew, row_of_obs = self.retrieve(all_processed, num_to_retrieve=num_contexts - 1) if return_retrieved_obs: all_retrieved_images = get_images_of_retrieved_obs(deepcopy(all_retrieved_obs), self.task) # Get the distances all_retrieved_obs = np.stack(all_retrieved_obs).astype(np.int32 if self.obs_key == 'discrete_observations' else np.float32) assert all_retrieved_obs.shape == (num_envs, num_contexts - 1, *self.raw_obs_dim), f'{all_retrieved_obs.shape=}, {num_envs=}, {self.raw_obs_dim=}, {num_contexts-1=}' all_distances = self.get_distances(all_retrieved_obs=all_retrieved_obs, all_processed=all_processed, query_obs=row_of_obs) # Batch retrieved data all_retrieved_act = np.stack(all_retrieved_act).astype(np.int32 if self.act_key == 'discrete_actions' else np.float32) all_retrieved_rew = np.stack(all_retrieved_rew).astype(np.float32) assert (((self.act_key == 'continuous_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1, self.act_dim)) or (self.act_key == 'discrete_actions' and all_retrieved_act.shape == (num_envs, num_contexts - 1))) and all_retrieved_rew.shape == (num_envs, num_contexts - 1)), f'{all_retrieved_act.shape=}, {all_retrieved_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}, {num_contexts-1=}' # Batch query data (already tensors) # query data is already int32/float32 after processing all_query_act = torch.stack([all_processed[idx][self.act_key][0] for idx in range(num_envs)]) all_query_obs = np.stack([all_processed[idx][self.obs_key][0] for idx in range(num_envs)]) all_query_rew = torch.stack([all_processed[idx][self.rew_key][0] for idx in range(num_envs)]) assert (((self.act_key == 'continuous_actions' and all_query_act.shape == (num_envs, 1, self.act_dim)) or (self.act_key == 'discrete_actions' and all_query_act.shape == (num_envs, 1))) and all_query_obs.shape == (num_envs, 1, *self.raw_obs_dim) and all_query_rew.shape == (num_envs, 1)), f'{all_query_act.shape=}, {all_query_obs.shape=}, {all_query_rew.shape=}, {num_envs=}, {self.act_dim=}, {self.raw_obs_dim=}' # Collect attn attn_weights = np.ones((num_envs, num_contexts)).astype(np.float32) # Compute exp_lamda_distances exp_lamda_distances = np.exp(-self.lamda * all_distances)[:, :, np.newaxis] assert exp_lamda_distances.shape == (num_envs, num_contexts, 1), f'{exp_lamda_distances.shape=}, {num_envs=}, {num_contexts=}' # Compute extra_key all_extra_key = [] for idx in range(num_envs): RandP_action = all_retrieved_act[idx, 0] if self.extra_key == 'continuous_RandP_actions': extra_key = [RandP_action for _ in range(num_contexts)] elif self.extra_key == 'discrete_RandP_action_logits': extra_key = [] for d in all_distances[idx]: d = min(1.0, max(0.0, d)) curr_logits = [1.0/self.N * d for _ in range(self.N)] curr_logits[RandP_action] = (1.0 + (self.N - 1.0)*(1.0 - d))/self.N extra_key.append(curr_logits) extra_key = np.stack(extra_key) all_extra_key.append(extra_key) all_extra_key = np.stack(all_extra_key).astype(np.float32) if self.extra_key == 'continuous_RandP_actions': assert all_extra_key.shape == (num_envs, num_contexts, self.act_dim), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.act_dim=}' elif self.extra_key == 'discrete_RandP_action_logits': assert all_extra_key.shape == (num_envs, num_contexts, self.N), f'{all_extra_key.shape=}, {num_envs=}, {num_contexts=}, {self.N=}' # Tensorify all_retrieved_act = torch.from_numpy(all_retrieved_act) all_retrieved_rew = torch.from_numpy(all_retrieved_rew) attn_weights = torch.from_numpy(attn_weights).to(self.device) exp_lamda_distances = torch.from_numpy(exp_lamda_distances).to(self.device) all_extra_key = torch.from_numpy(all_extra_key).to(self.device) # Concat retrieved and query batches all_act = torch.cat([all_retrieved_act, all_query_act], dim=1).to(self.device) all_obs = np.concatenate([all_retrieved_obs, all_query_obs], axis=1) if self.use_atari_embeddings and self.task.startswith("atari"): all_obs = all_obs.reshape(num_envs * num_contexts, *self.raw_obs_dim) all_obs = process_row_of_obs_atari_full_without_mask(all_obs) all_obs = torch.from_numpy(all_obs).to(self.device) with torch.no_grad(): all_obs = self.emb_model_full(self.emb_transform(all_obs)).reshape(num_envs, num_contexts, *self.emb_dim_full) else: all_obs = torch.from_numpy(all_obs).to(self.device) all_rew = torch.cat([all_retrieved_rew, all_query_rew], dim=1).to(self.device) # Collect action_space, deterministic from all_processed all_action_space = [all_processed[idx]['action_space'] for idx in range(num_envs)] all_deterministic = [all_processed[idx]['deterministic'] for idx in range(num_envs)] ## assert that all action_space and deterministic are same for all envs assert all([action_space == all_action_space[0] for action_space in all_action_space]), f'{all_action_space=}' assert all([deterministic == all_deterministic[0] for deterministic in all_deterministic]), f'{all_deterministic=}' ## then just use first one! action_space = all_action_space[0] deterministic = all_deterministic[0] # Forward pass if self.use_atari_embeddings and self.task.startswith("atari"): final_obs_key = 'continuous_observations' else: final_obs_key = self.obs_key outputs = self.forward(**{final_obs_key: all_obs, self.act_key: all_act, self.rew_key: all_rew, self.attn_key: attn_weights, 'exp_lamda_distances': exp_lamda_distances, self.extra_key: all_extra_key, }, return_loss=False) # Return the predicted action if self.act_key == 'continuous_actions': self.last_continuous_action = outputs.pred_actions[:, -1].cpu().numpy() assert self.last_continuous_action.shape == (num_envs, self.act_dim), f'{self.last_continuous_action.shape=}, {num_envs=}, {self.act_dim=}' myprint(f'L2dist(RandP action, Pred action): {[L2dist(all_retrieved_act[idx, 0].cpu().numpy(), self.last_continuous_action[idx]) for idx in range(num_envs)]}') self.last_continuous_action = list(self.last_continuous_action) # list of arrays return self.last_continuous_action if not return_retrieved_obs else (self.last_continuous_action, all_retrieved_images) elif self.act_key == 'discrete_actions': act_n = self.config.action_vocab_size if (self.task.startswith('atari') and self.use_global_atari_actions) else action_space.n logits = outputs.pred_actions[:, -1, : act_n] assert logits.shape == (num_envs, act_n), f'{logits.shape=}, {num_envs=}, {act_n=}' if deterministic: # myprint(f'{all_extra_key[:, -1, : action_space.n]=}') # myprint(f'{logits=}') self.last_discrete_action = logits.argmax(dim=-1, keepdim=True).cpu().numpy().reshape(-1) else: # sample self.last_discrete_action = torch.multinomial(logits.softmax(dim=-1), num_samples=1).cpu().numpy().reshape(-1) assert self.last_discrete_action.shape == (num_envs,), f'{self.last_discrete_action.shape=}, {num_envs=}' self.last_discrete_action = list(self.last_discrete_action) # list of ints myprint(f'RandP action: {all_retrieved_act[:, 0].cpu().numpy().tolist()} vs Pred action: {self.last_discrete_action}') if self.task.startswith("atari") and self.use_global_atari_actions: self.last_discrete_action = [convert_global_to_local_action(a, self.task) for a in self.last_discrete_action] myprint(f'[IN LOCAL ACTION] RandP action: {[convert_global_to_local_action(a, self.task) for a in all_retrieved_act[:, 0].cpu().numpy().tolist()]} vs Pred action: {self.last_discrete_action}') myprint(f'[IN LOCAL ACTION] diff: {[convert_global_to_local_action(a, self.task) - b for a, b in zip(all_retrieved_act[:, 0].cpu().numpy().tolist(), self.last_discrete_action)]}') return self.last_discrete_action if not return_retrieved_obs else (self.last_discrete_action, all_retrieved_images) JatRegentModel.register_for_auto_class("AutoModelForCausalLM")