Delete nnunetv2/Dataset504_Tissue
Browse files- nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json +0 -21
- nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json +0 -688
- nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth +0 -3
- nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json +0 -53
- nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json +0 -294
nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"description": "",
|
3 |
-
"labels": {
|
4 |
-
"background": 0,
|
5 |
-
"CSF": 1,
|
6 |
-
"Cortical Gray Matter": 2,
|
7 |
-
"White Matter": 3,
|
8 |
-
"Gray Matter": 4,
|
9 |
-
"Brain Stem": 5,
|
10 |
-
"Cerebellum": 6
|
11 |
-
},
|
12 |
-
"licence": "hands off!",
|
13 |
-
"name": "pcnsl_tissue",
|
14 |
-
"numTraining": 67,
|
15 |
-
"reference": "",
|
16 |
-
"release": "0.0",
|
17 |
-
"channel_names": {
|
18 |
-
"0": "T1"
|
19 |
-
},
|
20 |
-
"file_ending": ".nii.gz"
|
21 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json
DELETED
@@ -1,688 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"foreground_intensity_properties_per_channel": {
|
3 |
-
"0": {
|
4 |
-
"max": 93203.234375,
|
5 |
-
"mean": 1838.2391357421875,
|
6 |
-
"median": 359.3999938964844,
|
7 |
-
"min": 0.0,
|
8 |
-
"percentile_00_5": 0.0,
|
9 |
-
"percentile_99_5": 45620.28125,
|
10 |
-
"std": 6418.310546875
|
11 |
-
}
|
12 |
-
},
|
13 |
-
"median_relative_size_after_cropping": 0.6385053204652313,
|
14 |
-
"shapes_after_crop": [
|
15 |
-
[
|
16 |
-
144,
|
17 |
-
181,
|
18 |
-
142
|
19 |
-
],
|
20 |
-
[
|
21 |
-
144,
|
22 |
-
360,
|
23 |
-
281
|
24 |
-
],
|
25 |
-
[
|
26 |
-
124,
|
27 |
-
189,
|
28 |
-
155
|
29 |
-
],
|
30 |
-
[
|
31 |
-
140,
|
32 |
-
335,
|
33 |
-
307
|
34 |
-
],
|
35 |
-
[
|
36 |
-
144,
|
37 |
-
181,
|
38 |
-
142
|
39 |
-
],
|
40 |
-
[
|
41 |
-
144,
|
42 |
-
360,
|
43 |
-
281
|
44 |
-
],
|
45 |
-
[
|
46 |
-
88,
|
47 |
-
172,
|
48 |
-
141
|
49 |
-
],
|
50 |
-
[
|
51 |
-
107,
|
52 |
-
187,
|
53 |
-
143
|
54 |
-
],
|
55 |
-
[
|
56 |
-
125,
|
57 |
-
209,
|
58 |
-
155
|
59 |
-
],
|
60 |
-
[
|
61 |
-
109,
|
62 |
-
182,
|
63 |
-
149
|
64 |
-
],
|
65 |
-
[
|
66 |
-
94,
|
67 |
-
164,
|
68 |
-
124
|
69 |
-
],
|
70 |
-
[
|
71 |
-
165,
|
72 |
-
132,
|
73 |
-
164
|
74 |
-
],
|
75 |
-
[
|
76 |
-
102,
|
77 |
-
177,
|
78 |
-
159
|
79 |
-
],
|
80 |
-
[
|
81 |
-
120,
|
82 |
-
175,
|
83 |
-
161
|
84 |
-
],
|
85 |
-
[
|
86 |
-
79,
|
87 |
-
164,
|
88 |
-
142
|
89 |
-
],
|
90 |
-
[
|
91 |
-
94,
|
92 |
-
170,
|
93 |
-
136
|
94 |
-
],
|
95 |
-
[
|
96 |
-
122,
|
97 |
-
163,
|
98 |
-
156
|
99 |
-
],
|
100 |
-
[
|
101 |
-
117,
|
102 |
-
211,
|
103 |
-
171
|
104 |
-
],
|
105 |
-
[
|
106 |
-
127,
|
107 |
-
190,
|
108 |
-
151
|
109 |
-
],
|
110 |
-
[
|
111 |
-
125,
|
112 |
-
203,
|
113 |
-
163
|
114 |
-
],
|
115 |
-
[
|
116 |
-
117,
|
117 |
-
188,
|
118 |
-
163
|
119 |
-
],
|
120 |
-
[
|
121 |
-
175,
|
122 |
-
153,
|
123 |
-
165
|
124 |
-
],
|
125 |
-
[
|
126 |
-
113,
|
127 |
-
197,
|
128 |
-
152
|
129 |
-
],
|
130 |
-
[
|
131 |
-
120,
|
132 |
-
179,
|
133 |
-
153
|
134 |
-
],
|
135 |
-
[
|
136 |
-
109,
|
137 |
-
176,
|
138 |
-
141
|
139 |
-
],
|
140 |
-
[
|
141 |
-
117,
|
142 |
-
187,
|
143 |
-
141
|
144 |
-
],
|
145 |
-
[
|
146 |
-
118,
|
147 |
-
209,
|
148 |
-
166
|
149 |
-
],
|
150 |
-
[
|
151 |
-
113,
|
152 |
-
203,
|
153 |
-
148
|
154 |
-
],
|
155 |
-
[
|
156 |
-
119,
|
157 |
-
200,
|
158 |
-
153
|
159 |
-
],
|
160 |
-
[
|
161 |
-
114,
|
162 |
-
203,
|
163 |
-
162
|
164 |
-
],
|
165 |
-
[
|
166 |
-
175,
|
167 |
-
149,
|
168 |
-
169
|
169 |
-
],
|
170 |
-
[
|
171 |
-
122,
|
172 |
-
180,
|
173 |
-
155
|
174 |
-
],
|
175 |
-
[
|
176 |
-
117,
|
177 |
-
196,
|
178 |
-
147
|
179 |
-
],
|
180 |
-
[
|
181 |
-
120,
|
182 |
-
192,
|
183 |
-
145
|
184 |
-
],
|
185 |
-
[
|
186 |
-
185,
|
187 |
-
142,
|
188 |
-
174
|
189 |
-
],
|
190 |
-
[
|
191 |
-
180,
|
192 |
-
142,
|
193 |
-
175
|
194 |
-
],
|
195 |
-
[
|
196 |
-
180,
|
197 |
-
145,
|
198 |
-
180
|
199 |
-
],
|
200 |
-
[
|
201 |
-
168,
|
202 |
-
188,
|
203 |
-
164
|
204 |
-
],
|
205 |
-
[
|
206 |
-
113,
|
207 |
-
347,
|
208 |
-
280
|
209 |
-
],
|
210 |
-
[
|
211 |
-
129,
|
212 |
-
198,
|
213 |
-
154
|
214 |
-
],
|
215 |
-
[
|
216 |
-
90,
|
217 |
-
180,
|
218 |
-
136
|
219 |
-
],
|
220 |
-
[
|
221 |
-
120,
|
222 |
-
400,
|
223 |
-
313
|
224 |
-
],
|
225 |
-
[
|
226 |
-
115,
|
227 |
-
339,
|
228 |
-
265
|
229 |
-
],
|
230 |
-
[
|
231 |
-
55,
|
232 |
-
179,
|
233 |
-
151
|
234 |
-
],
|
235 |
-
[
|
236 |
-
170,
|
237 |
-
283,
|
238 |
-
340
|
239 |
-
],
|
240 |
-
[
|
241 |
-
165,
|
242 |
-
303,
|
243 |
-
346
|
244 |
-
],
|
245 |
-
[
|
246 |
-
98,
|
247 |
-
188,
|
248 |
-
159
|
249 |
-
],
|
250 |
-
[
|
251 |
-
120,
|
252 |
-
403,
|
253 |
-
311
|
254 |
-
],
|
255 |
-
[
|
256 |
-
165,
|
257 |
-
145,
|
258 |
-
166
|
259 |
-
],
|
260 |
-
[
|
261 |
-
55,
|
262 |
-
304,
|
263 |
-
313
|
264 |
-
],
|
265 |
-
[
|
266 |
-
165,
|
267 |
-
139,
|
268 |
-
178
|
269 |
-
],
|
270 |
-
[
|
271 |
-
170,
|
272 |
-
254,
|
273 |
-
340
|
274 |
-
],
|
275 |
-
[
|
276 |
-
112,
|
277 |
-
380,
|
278 |
-
291
|
279 |
-
],
|
280 |
-
[
|
281 |
-
120,
|
282 |
-
393,
|
283 |
-
306
|
284 |
-
],
|
285 |
-
[
|
286 |
-
115,
|
287 |
-
394,
|
288 |
-
299
|
289 |
-
],
|
290 |
-
[
|
291 |
-
185,
|
292 |
-
309,
|
293 |
-
336
|
294 |
-
],
|
295 |
-
[
|
296 |
-
119,
|
297 |
-
358,
|
298 |
-
307
|
299 |
-
],
|
300 |
-
[
|
301 |
-
142,
|
302 |
-
397,
|
303 |
-
312
|
304 |
-
],
|
305 |
-
[
|
306 |
-
120,
|
307 |
-
403,
|
308 |
-
286
|
309 |
-
],
|
310 |
-
[
|
311 |
-
140,
|
312 |
-
390,
|
313 |
-
317
|
314 |
-
],
|
315 |
-
[
|
316 |
-
67,
|
317 |
-
170,
|
318 |
-
143
|
319 |
-
],
|
320 |
-
[
|
321 |
-
37,
|
322 |
-
182,
|
323 |
-
182
|
324 |
-
],
|
325 |
-
[
|
326 |
-
120,
|
327 |
-
390,
|
328 |
-
317
|
329 |
-
],
|
330 |
-
[
|
331 |
-
120,
|
332 |
-
353,
|
333 |
-
294
|
334 |
-
],
|
335 |
-
[
|
336 |
-
119,
|
337 |
-
366,
|
338 |
-
284
|
339 |
-
],
|
340 |
-
[
|
341 |
-
133,
|
342 |
-
345,
|
343 |
-
283
|
344 |
-
],
|
345 |
-
[
|
346 |
-
133,
|
347 |
-
416,
|
348 |
-
306
|
349 |
-
]
|
350 |
-
],
|
351 |
-
"spacings": [
|
352 |
-
[
|
353 |
-
1.0,
|
354 |
-
1.0,
|
355 |
-
1.0
|
356 |
-
],
|
357 |
-
[
|
358 |
-
1.0,
|
359 |
-
0.5,
|
360 |
-
0.5
|
361 |
-
],
|
362 |
-
[
|
363 |
-
1.2000000476837158,
|
364 |
-
0.8984375,
|
365 |
-
0.8984375
|
366 |
-
],
|
367 |
-
[
|
368 |
-
1.0,
|
369 |
-
0.46880000829696655,
|
370 |
-
0.46880000829696655
|
371 |
-
],
|
372 |
-
[
|
373 |
-
1.0,
|
374 |
-
1.0,
|
375 |
-
1.0
|
376 |
-
],
|
377 |
-
[
|
378 |
-
1.0,
|
379 |
-
0.5,
|
380 |
-
0.5
|
381 |
-
],
|
382 |
-
[
|
383 |
-
1.5,
|
384 |
-
1.0,
|
385 |
-
1.0
|
386 |
-
],
|
387 |
-
[
|
388 |
-
1.2000000476837158,
|
389 |
-
0.859375,
|
390 |
-
0.859375
|
391 |
-
],
|
392 |
-
[
|
393 |
-
1.198165774345398,
|
394 |
-
0.859369695186615,
|
395 |
-
0.859375
|
396 |
-
],
|
397 |
-
[
|
398 |
-
1.2000000476837158,
|
399 |
-
0.859375,
|
400 |
-
0.859375
|
401 |
-
],
|
402 |
-
[
|
403 |
-
1.5,
|
404 |
-
1.015625,
|
405 |
-
1.015625
|
406 |
-
],
|
407 |
-
[
|
408 |
-
0.800000011920929,
|
409 |
-
0.9375,
|
410 |
-
0.9375
|
411 |
-
],
|
412 |
-
[
|
413 |
-
1.2000000476837158,
|
414 |
-
0.859375,
|
415 |
-
0.859375
|
416 |
-
],
|
417 |
-
[
|
418 |
-
1.2000000476837158,
|
419 |
-
0.8984379768371582,
|
420 |
-
0.8984379768371582
|
421 |
-
],
|
422 |
-
[
|
423 |
-
1.5,
|
424 |
-
0.9375,
|
425 |
-
0.9375
|
426 |
-
],
|
427 |
-
[
|
428 |
-
1.5,
|
429 |
-
1.015625,
|
430 |
-
1.015625
|
431 |
-
],
|
432 |
-
[
|
433 |
-
1.2000000476837158,
|
434 |
-
0.859375,
|
435 |
-
0.859375
|
436 |
-
],
|
437 |
-
[
|
438 |
-
1.2000000476837158,
|
439 |
-
0.859375,
|
440 |
-
0.859375
|
441 |
-
],
|
442 |
-
[
|
443 |
-
1.1845674514770508,
|
444 |
-
0.9374970197677612,
|
445 |
-
0.9375
|
446 |
-
],
|
447 |
-
[
|
448 |
-
1.2008330821990967,
|
449 |
-
0.8593699932098389,
|
450 |
-
0.8593819737434387
|
451 |
-
],
|
452 |
-
[
|
453 |
-
1.196160078048706,
|
454 |
-
0.8593789935112,
|
455 |
-
0.8593689799308777
|
456 |
-
],
|
457 |
-
[
|
458 |
-
0.800000011920929,
|
459 |
-
0.9375,
|
460 |
-
0.9375
|
461 |
-
],
|
462 |
-
[
|
463 |
-
1.1860862970352173,
|
464 |
-
0.8593829870223999,
|
465 |
-
0.8593829870223999
|
466 |
-
],
|
467 |
-
[
|
468 |
-
1.2000000476837158,
|
469 |
-
0.8593649864196777,
|
470 |
-
0.859375
|
471 |
-
],
|
472 |
-
[
|
473 |
-
1.2006665468215942,
|
474 |
-
0.8593699932098389,
|
475 |
-
0.859375
|
476 |
-
],
|
477 |
-
[
|
478 |
-
1.1968294382095337,
|
479 |
-
0.9375069737434387,
|
480 |
-
0.9375
|
481 |
-
],
|
482 |
-
[
|
483 |
-
1.2003334760665894,
|
484 |
-
0.8593779802322388,
|
485 |
-
0.859375
|
486 |
-
],
|
487 |
-
[
|
488 |
-
1.1854116916656494,
|
489 |
-
0.8593810200691223,
|
490 |
-
0.8593670129776001
|
491 |
-
],
|
492 |
-
[
|
493 |
-
1.2000000476837158,
|
494 |
-
0.859375,
|
495 |
-
0.859375
|
496 |
-
],
|
497 |
-
[
|
498 |
-
1.1936500072479248,
|
499 |
-
0.8593850135803223,
|
500 |
-
0.859375
|
501 |
-
],
|
502 |
-
[
|
503 |
-
0.800000011920929,
|
504 |
-
0.9375,
|
505 |
-
0.9375
|
506 |
-
],
|
507 |
-
[
|
508 |
-
1.2000000476837158,
|
509 |
-
0.9375,
|
510 |
-
0.9375
|
511 |
-
],
|
512 |
-
[
|
513 |
-
1.2000000476837158,
|
514 |
-
0.9375119805335999,
|
515 |
-
0.9375
|
516 |
-
],
|
517 |
-
[
|
518 |
-
1.2001665830612183,
|
519 |
-
0.8593729734420776,
|
520 |
-
0.859375
|
521 |
-
],
|
522 |
-
[
|
523 |
-
0.800000011920929,
|
524 |
-
0.9765620231628418,
|
525 |
-
0.9765620231628418
|
526 |
-
],
|
527 |
-
[
|
528 |
-
0.800000011920929,
|
529 |
-
0.9375,
|
530 |
-
0.9375
|
531 |
-
],
|
532 |
-
[
|
533 |
-
0.800000011920929,
|
534 |
-
0.9375,
|
535 |
-
0.9375
|
536 |
-
],
|
537 |
-
[
|
538 |
-
0.8799999952316284,
|
539 |
-
0.859375,
|
540 |
-
0.859375
|
541 |
-
],
|
542 |
-
[
|
543 |
-
1.2000000476837158,
|
544 |
-
0.4687501788139343,
|
545 |
-
0.46874934434890747
|
546 |
-
],
|
547 |
-
[
|
548 |
-
1.2000000476837158,
|
549 |
-
0.859375,
|
550 |
-
0.859375
|
551 |
-
],
|
552 |
-
[
|
553 |
-
1.4999996423721313,
|
554 |
-
0.8984375,
|
555 |
-
0.8984375
|
556 |
-
],
|
557 |
-
[
|
558 |
-
1.2000000476837158,
|
559 |
-
0.42969998717308044,
|
560 |
-
0.42969998717308044
|
561 |
-
],
|
562 |
-
[
|
563 |
-
1.2000000476837158,
|
564 |
-
0.5208333134651184,
|
565 |
-
0.5208333134651184
|
566 |
-
],
|
567 |
-
[
|
568 |
-
1.2000000476837158,
|
569 |
-
0.8984379768371582,
|
570 |
-
0.8984379768371582
|
571 |
-
],
|
572 |
-
[
|
573 |
-
0.800000011920929,
|
574 |
-
0.46880000829696655,
|
575 |
-
0.46880000829696655
|
576 |
-
],
|
577 |
-
[
|
578 |
-
0.800000011920929,
|
579 |
-
0.46880000829696655,
|
580 |
-
0.46880000829696655
|
581 |
-
],
|
582 |
-
[
|
583 |
-
1.399999976158142,
|
584 |
-
0.8593999743461609,
|
585 |
-
0.8593999743461609
|
586 |
-
],
|
587 |
-
[
|
588 |
-
1.2000808715820312,
|
589 |
-
0.42969998717308044,
|
590 |
-
0.42969998717308044
|
591 |
-
],
|
592 |
-
[
|
593 |
-
0.800000011920929,
|
594 |
-
0.9375,
|
595 |
-
0.9375
|
596 |
-
],
|
597 |
-
[
|
598 |
-
1.2000000476837158,
|
599 |
-
0.42969998717308044,
|
600 |
-
0.42969998717308044
|
601 |
-
],
|
602 |
-
[
|
603 |
-
0.800000011920929,
|
604 |
-
0.9375,
|
605 |
-
0.9375
|
606 |
-
],
|
607 |
-
[
|
608 |
-
0.800000011920929,
|
609 |
-
0.5468999743461609,
|
610 |
-
0.5468999743461609
|
611 |
-
],
|
612 |
-
[
|
613 |
-
1.2000000476837158,
|
614 |
-
0.42969998717308044,
|
615 |
-
0.42969998717308044
|
616 |
-
],
|
617 |
-
[
|
618 |
-
1.2000000476837158,
|
619 |
-
0.42969998717308044,
|
620 |
-
0.42969998717308044
|
621 |
-
],
|
622 |
-
[
|
623 |
-
1.2000000476837158,
|
624 |
-
0.42969998717308044,
|
625 |
-
0.42969998717308044
|
626 |
-
],
|
627 |
-
[
|
628 |
-
0.800000011920929,
|
629 |
-
0.46880000829696655,
|
630 |
-
0.46880000829696655
|
631 |
-
],
|
632 |
-
[
|
633 |
-
1.2000000476837158,
|
634 |
-
0.44920000433921814,
|
635 |
-
0.44920000433921814
|
636 |
-
],
|
637 |
-
[
|
638 |
-
1.0,
|
639 |
-
0.44921499490737915,
|
640 |
-
0.44922399520874023
|
641 |
-
],
|
642 |
-
[
|
643 |
-
1.2000000476837158,
|
644 |
-
0.42969998717308044,
|
645 |
-
0.42969998717308044
|
646 |
-
],
|
647 |
-
[
|
648 |
-
1.0,
|
649 |
-
0.42969998717308044,
|
650 |
-
0.42969998717308044
|
651 |
-
],
|
652 |
-
[
|
653 |
-
1.2000000476837158,
|
654 |
-
0.859375,
|
655 |
-
0.859375
|
656 |
-
],
|
657 |
-
[
|
658 |
-
1.7999913692474365,
|
659 |
-
0.7031000256538391,
|
660 |
-
0.7031000256538391
|
661 |
-
],
|
662 |
-
[
|
663 |
-
1.2000000476837158,
|
664 |
-
0.42969998717308044,
|
665 |
-
0.42969998717308044
|
666 |
-
],
|
667 |
-
[
|
668 |
-
1.2000000476837158,
|
669 |
-
0.46880000829696655,
|
670 |
-
0.46880000829696655
|
671 |
-
],
|
672 |
-
[
|
673 |
-
1.2000000476837158,
|
674 |
-
0.46880000829696655,
|
675 |
-
0.46880000829696655
|
676 |
-
],
|
677 |
-
[
|
678 |
-
1.0,
|
679 |
-
0.46880000829696655,
|
680 |
-
0.46880000829696655
|
681 |
-
],
|
682 |
-
[
|
683 |
-
1.2000000476837158,
|
684 |
-
0.42969998717308044,
|
685 |
-
0.42969998717308044
|
686 |
-
]
|
687 |
-
]
|
688 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b507fe65c311b5efea1bf1663233a12e89ca29ca61b308591a0b5d8900843a0c
|
3 |
-
size 247111920
|
|
|
|
|
|
|
|
nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_best_ema": "None",
|
3 |
-
"batch_size": "2",
|
4 |
-
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 160, 128], 'median_image_size_in_voxels': [117.0, 192.0, 160.0], 'spacing': [1.2000000476837158, 0.859375, 0.859375], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
-
"configuration_name": "3d_fullres",
|
6 |
-
"cudnn_version": 8902,
|
7 |
-
"current_epoch": "0",
|
8 |
-
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd8bf275c70>",
|
9 |
-
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd8bf252c40>",
|
10 |
-
"dataloader_train.num_processes": "12",
|
11 |
-
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [112, 160, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), MaskTransform( apply_to_channels = [0], seg_key = 'seg', data_key = 'data', set_outside_to = 0, mask_idx_in_seg = 0 ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
-
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd8bf275a00>",
|
13 |
-
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd8bf275c40>",
|
14 |
-
"dataloader_val.num_processes": "6",
|
15 |
-
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [0.5, 0.5, 0.5], [0.25, 0.25, 0.25], [0.125, 0.125, 0.125], [0.0625, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
-
"dataset_json": "{'description': '', 'labels': {'background': 0, 'CSF': 1, 'Cortical Gray Matter': 2, 'White Matter': 3, 'Gray Matter': 4, 'Brain Stem': 5, 'Cerebellum': 6}, 'licence': 'hands off!', 'name': 'pcnsl_tissue', 'numTraining': 67, 'reference': '', 'release': '0.0', 'channel_names': {'0': 'T1'}, 'file_ending': '.nii.gz'}",
|
17 |
-
"device": "cuda:0",
|
18 |
-
"disable_checkpointing": "False",
|
19 |
-
"enable_deep_supervision": "True",
|
20 |
-
"fold": "3",
|
21 |
-
"folder_with_segs_from_previous_stage": "None",
|
22 |
-
"gpu_name": "NVIDIA A100-SXM4-40GB",
|
23 |
-
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fd8bf638280>",
|
24 |
-
"hostname": "anahita",
|
25 |
-
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
26 |
-
"initial_lr": "0.01",
|
27 |
-
"is_cascaded": "False",
|
28 |
-
"is_ddp": "False",
|
29 |
-
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fd8bf638340>",
|
30 |
-
"local_rank": "0",
|
31 |
-
"log_file": "/working/i2_phi3/CNS_lymphoma/repos/nnunet-2/nnUNet/nnunetv2/results/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2024_1_18_01_59_19.txt",
|
32 |
-
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fd8bf6381c0>",
|
33 |
-
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
34 |
-
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fd8bf275bb0>",
|
35 |
-
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset504_Tissue', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.2000000476837158, 0.859375, 0.859375], 'original_median_shape_after_transp': [120, 196, 165], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 104, 'patch_size': [192, 160], 'median_image_size_in_voxels': [192.0, 160.0], 'spacing': [0.859375, 0.859375], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 160, 128], 'median_image_size_in_voxels': [117.0, 192.0, 160.0], 'spacing': [1.2000000476837158, 0.859375, 0.859375], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 93203.234375, 'mean': 1838.2391357421875, 'median': 359.3999938964844, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 45620.28125, 'std': 6418.310546875}}}, 'configuration': '3d_fullres', 'fold': 3, 'dataset_json': {'description': '', 'labels': {'background': 0, 'CSF': 1, 'Cortical Gray Matter': 2, 'White Matter': 3, 'Gray Matter': 4, 'Brain Stem': 5, 'Cerebellum': 6}, 'licence': 'hands off!', 'name': 'pcnsl_tissue', 'numTraining': 67, 'reference': '', 'release': '0.0', 'channel_names': {'0': 'T1'}, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
36 |
-
"network": "PlainConvUNet",
|
37 |
-
"num_epochs": "1000",
|
38 |
-
"num_input_channels": "1",
|
39 |
-
"num_iterations_per_epoch": "250",
|
40 |
-
"num_val_iterations_per_epoch": "50",
|
41 |
-
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
42 |
-
"output_folder": "/working/i2_phi3/CNS_lymphoma/repos/nnunet-2/nnUNet/nnunetv2/results/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3",
|
43 |
-
"output_folder_base": "/working/i2_phi3/CNS_lymphoma/repos/nnunet-2/nnUNet/nnunetv2/results/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
44 |
-
"oversample_foreground_percent": "0.33",
|
45 |
-
"plans_manager": "{'dataset_name': 'Dataset504_Tissue', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [1.2000000476837158, 0.859375, 0.859375], 'original_median_shape_after_transp': [120, 196, 165], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 104, 'patch_size': [192, 160], 'median_image_size_in_voxels': [192.0, 160.0], 'spacing': [0.859375, 0.859375], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [112, 160, 128], 'median_image_size_in_voxels': [117.0, 192.0, 160.0], 'spacing': [1.2000000476837158, 0.859375, 0.859375], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [True], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 93203.234375, 'mean': 1838.2391357421875, 'median': 359.3999938964844, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 45620.28125, 'std': 6418.310546875}}}",
|
46 |
-
"preprocessed_dataset_folder": "/working/i2_phi3/CNS_lymphoma/repos/nnunet-2/nnUNet/nnunetv2/preprocessed/Dataset504_Tissue/nnUNetPlans_3d_fullres",
|
47 |
-
"preprocessed_dataset_folder_base": "/working/i2_phi3/CNS_lymphoma/repos/nnunet-2/nnUNet/nnunetv2/preprocessed/Dataset504_Tissue",
|
48 |
-
"save_every": "50",
|
49 |
-
"torch_version": "2.1.2+cu121",
|
50 |
-
"unpack_dataset": "True",
|
51 |
-
"was_initialized": "True",
|
52 |
-
"weight_decay": "3e-05"
|
53 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nnunetv2/Dataset504_Tissue/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json
DELETED
@@ -1,294 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"dataset_name": "Dataset504_Tissue",
|
3 |
-
"plans_name": "nnUNetPlans",
|
4 |
-
"original_median_spacing_after_transp": [
|
5 |
-
1.2000000476837158,
|
6 |
-
0.859375,
|
7 |
-
0.859375
|
8 |
-
],
|
9 |
-
"original_median_shape_after_transp": [
|
10 |
-
120,
|
11 |
-
196,
|
12 |
-
165
|
13 |
-
],
|
14 |
-
"image_reader_writer": "SimpleITKIO",
|
15 |
-
"transpose_forward": [
|
16 |
-
0,
|
17 |
-
1,
|
18 |
-
2
|
19 |
-
],
|
20 |
-
"transpose_backward": [
|
21 |
-
0,
|
22 |
-
1,
|
23 |
-
2
|
24 |
-
],
|
25 |
-
"configurations": {
|
26 |
-
"2d": {
|
27 |
-
"data_identifier": "nnUNetPlans_2d",
|
28 |
-
"preprocessor_name": "DefaultPreprocessor",
|
29 |
-
"batch_size": 104,
|
30 |
-
"patch_size": [
|
31 |
-
192,
|
32 |
-
160
|
33 |
-
],
|
34 |
-
"median_image_size_in_voxels": [
|
35 |
-
192.0,
|
36 |
-
160.0
|
37 |
-
],
|
38 |
-
"spacing": [
|
39 |
-
0.859375,
|
40 |
-
0.859375
|
41 |
-
],
|
42 |
-
"normalization_schemes": [
|
43 |
-
"ZScoreNormalization"
|
44 |
-
],
|
45 |
-
"use_mask_for_norm": [
|
46 |
-
true
|
47 |
-
],
|
48 |
-
"UNet_class_name": "PlainConvUNet",
|
49 |
-
"UNet_base_num_features": 32,
|
50 |
-
"n_conv_per_stage_encoder": [
|
51 |
-
2,
|
52 |
-
2,
|
53 |
-
2,
|
54 |
-
2,
|
55 |
-
2,
|
56 |
-
2
|
57 |
-
],
|
58 |
-
"n_conv_per_stage_decoder": [
|
59 |
-
2,
|
60 |
-
2,
|
61 |
-
2,
|
62 |
-
2,
|
63 |
-
2
|
64 |
-
],
|
65 |
-
"num_pool_per_axis": [
|
66 |
-
5,
|
67 |
-
5
|
68 |
-
],
|
69 |
-
"pool_op_kernel_sizes": [
|
70 |
-
[
|
71 |
-
1,
|
72 |
-
1
|
73 |
-
],
|
74 |
-
[
|
75 |
-
2,
|
76 |
-
2
|
77 |
-
],
|
78 |
-
[
|
79 |
-
2,
|
80 |
-
2
|
81 |
-
],
|
82 |
-
[
|
83 |
-
2,
|
84 |
-
2
|
85 |
-
],
|
86 |
-
[
|
87 |
-
2,
|
88 |
-
2
|
89 |
-
],
|
90 |
-
[
|
91 |
-
2,
|
92 |
-
2
|
93 |
-
]
|
94 |
-
],
|
95 |
-
"conv_kernel_sizes": [
|
96 |
-
[
|
97 |
-
3,
|
98 |
-
3
|
99 |
-
],
|
100 |
-
[
|
101 |
-
3,
|
102 |
-
3
|
103 |
-
],
|
104 |
-
[
|
105 |
-
3,
|
106 |
-
3
|
107 |
-
],
|
108 |
-
[
|
109 |
-
3,
|
110 |
-
3
|
111 |
-
],
|
112 |
-
[
|
113 |
-
3,
|
114 |
-
3
|
115 |
-
],
|
116 |
-
[
|
117 |
-
3,
|
118 |
-
3
|
119 |
-
]
|
120 |
-
],
|
121 |
-
"unet_max_num_features": 512,
|
122 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
123 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
124 |
-
"resampling_fn_data_kwargs": {
|
125 |
-
"is_seg": false,
|
126 |
-
"order": 3,
|
127 |
-
"order_z": 0,
|
128 |
-
"force_separate_z": null
|
129 |
-
},
|
130 |
-
"resampling_fn_seg_kwargs": {
|
131 |
-
"is_seg": true,
|
132 |
-
"order": 1,
|
133 |
-
"order_z": 0,
|
134 |
-
"force_separate_z": null
|
135 |
-
},
|
136 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
137 |
-
"resampling_fn_probabilities_kwargs": {
|
138 |
-
"is_seg": false,
|
139 |
-
"order": 1,
|
140 |
-
"order_z": 0,
|
141 |
-
"force_separate_z": null
|
142 |
-
},
|
143 |
-
"batch_dice": true
|
144 |
-
},
|
145 |
-
"3d_fullres": {
|
146 |
-
"data_identifier": "nnUNetPlans_3d_fullres",
|
147 |
-
"preprocessor_name": "DefaultPreprocessor",
|
148 |
-
"batch_size": 2,
|
149 |
-
"patch_size": [
|
150 |
-
112,
|
151 |
-
160,
|
152 |
-
128
|
153 |
-
],
|
154 |
-
"median_image_size_in_voxels": [
|
155 |
-
117.0,
|
156 |
-
192.0,
|
157 |
-
160.0
|
158 |
-
],
|
159 |
-
"spacing": [
|
160 |
-
1.2000000476837158,
|
161 |
-
0.859375,
|
162 |
-
0.859375
|
163 |
-
],
|
164 |
-
"normalization_schemes": [
|
165 |
-
"ZScoreNormalization"
|
166 |
-
],
|
167 |
-
"use_mask_for_norm": [
|
168 |
-
true
|
169 |
-
],
|
170 |
-
"UNet_class_name": "PlainConvUNet",
|
171 |
-
"UNet_base_num_features": 32,
|
172 |
-
"n_conv_per_stage_encoder": [
|
173 |
-
2,
|
174 |
-
2,
|
175 |
-
2,
|
176 |
-
2,
|
177 |
-
2,
|
178 |
-
2
|
179 |
-
],
|
180 |
-
"n_conv_per_stage_decoder": [
|
181 |
-
2,
|
182 |
-
2,
|
183 |
-
2,
|
184 |
-
2,
|
185 |
-
2
|
186 |
-
],
|
187 |
-
"num_pool_per_axis": [
|
188 |
-
4,
|
189 |
-
5,
|
190 |
-
5
|
191 |
-
],
|
192 |
-
"pool_op_kernel_sizes": [
|
193 |
-
[
|
194 |
-
1,
|
195 |
-
1,
|
196 |
-
1
|
197 |
-
],
|
198 |
-
[
|
199 |
-
2,
|
200 |
-
2,
|
201 |
-
2
|
202 |
-
],
|
203 |
-
[
|
204 |
-
2,
|
205 |
-
2,
|
206 |
-
2
|
207 |
-
],
|
208 |
-
[
|
209 |
-
2,
|
210 |
-
2,
|
211 |
-
2
|
212 |
-
],
|
213 |
-
[
|
214 |
-
2,
|
215 |
-
2,
|
216 |
-
2
|
217 |
-
],
|
218 |
-
[
|
219 |
-
1,
|
220 |
-
2,
|
221 |
-
2
|
222 |
-
]
|
223 |
-
],
|
224 |
-
"conv_kernel_sizes": [
|
225 |
-
[
|
226 |
-
3,
|
227 |
-
3,
|
228 |
-
3
|
229 |
-
],
|
230 |
-
[
|
231 |
-
3,
|
232 |
-
3,
|
233 |
-
3
|
234 |
-
],
|
235 |
-
[
|
236 |
-
3,
|
237 |
-
3,
|
238 |
-
3
|
239 |
-
],
|
240 |
-
[
|
241 |
-
3,
|
242 |
-
3,
|
243 |
-
3
|
244 |
-
],
|
245 |
-
[
|
246 |
-
3,
|
247 |
-
3,
|
248 |
-
3
|
249 |
-
],
|
250 |
-
[
|
251 |
-
3,
|
252 |
-
3,
|
253 |
-
3
|
254 |
-
]
|
255 |
-
],
|
256 |
-
"unet_max_num_features": 320,
|
257 |
-
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
258 |
-
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
259 |
-
"resampling_fn_data_kwargs": {
|
260 |
-
"is_seg": false,
|
261 |
-
"order": 3,
|
262 |
-
"order_z": 0,
|
263 |
-
"force_separate_z": null
|
264 |
-
},
|
265 |
-
"resampling_fn_seg_kwargs": {
|
266 |
-
"is_seg": true,
|
267 |
-
"order": 1,
|
268 |
-
"order_z": 0,
|
269 |
-
"force_separate_z": null
|
270 |
-
},
|
271 |
-
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
272 |
-
"resampling_fn_probabilities_kwargs": {
|
273 |
-
"is_seg": false,
|
274 |
-
"order": 1,
|
275 |
-
"order_z": 0,
|
276 |
-
"force_separate_z": null
|
277 |
-
},
|
278 |
-
"batch_dice": false
|
279 |
-
}
|
280 |
-
},
|
281 |
-
"experiment_planner_used": "ExperimentPlanner",
|
282 |
-
"label_manager": "LabelManager",
|
283 |
-
"foreground_intensity_properties_per_channel": {
|
284 |
-
"0": {
|
285 |
-
"max": 93203.234375,
|
286 |
-
"mean": 1838.2391357421875,
|
287 |
-
"median": 359.3999938964844,
|
288 |
-
"min": 0.0,
|
289 |
-
"percentile_00_5": 0.0,
|
290 |
-
"percentile_99_5": 45620.28125,
|
291 |
-
"std": 6418.310546875
|
292 |
-
}
|
293 |
-
}
|
294 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|