reichenbach commited on
Commit
5a04bd8
·
verified ·
1 Parent(s): 52faf6c

Initial Commit - Lunar Landing Trained Model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 280.10 +/- 21.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e779f79f0a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e779f79f130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e779f79f1c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e779f79f250>", "_build": "<function ActorCriticPolicy._build at 0x7e779f79f2e0>", "forward": "<function ActorCriticPolicy.forward at 0x7e779f79f370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e779f79f400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e779f79f490>", "_predict": "<function ActorCriticPolicy._predict at 0x7e779f79f520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e779f79f5b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e779f79f640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e779f79f6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e779f72c180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735412765036952179, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM344DzHVLI/vQq/PjuMRL4aWbM67GakPQAAAAAAAAAAU9vLPlvmKz+a5mE9wWnivvZ0nj4sjh6+AAAAAAAAAABQSHW+798DPxLgHz5ktbq+S3yyvXJLpD0AAAAAAAAAAM0loryNoWQ/SrzuvEpT9r62IMK8k2mvvAAAAAAAAAAAZgu6PEhpk7pORZw0Pf1pMLpEKjtnIEqzAACAPwAAgD/NqnA+PrJrP6qeoz4ZUge/FsOePmVUDz0AAAAAAAAAAE1w1D2LC8I/TvoeP55NvD1GDT49MA8fPgAAAAAAAAAAmtktOkUxuD8lNAA8phbJPYJMBrtoSv06AAAAAAAAAACGu34+JLliP4t0+D6GsRK/8FW0PjoErj0AAAAAAAAAABp+uD17fIG6GtT6Mu/GejDpwTE7Mp+eswAAgD8AAIA/mnUnvimOaz6w+5g+JUJyvnBYQDzKOF09AAAAAAAAAABNPCc+bH09PoXZCr7Fqma+WMFOPRnHqr0AAAAAAAAAAAYPJj5KVWU++so4vnAIb7734iw9FsjfvAAAAAAAAAAAwNUaPk+pHLywYkI8NyCsuoC9hr2gCI+7AACAPwAAgD/NAuk9TEGFP0gGfD4nSRK/DCzkPaMk+T0AAAAAAAAAAOAUKj5pXUa8CBdnOy4juLmz9Ke9W0CUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsXTd+G4+MAWyUS+uMAXSUR0CXz43JPqLTdX2UKGgGR0BzG2+36Q/5aAdL+2gIR0CXz8QZGax5dX2UKGgGR0ByifDn/1g6aAdNHAFoCEdAl9AYHs1KoXV9lChoBkdAcIqi3G4qgGgHS+poCEdAl9EWYBvJinV9lChoBkdAbypwCKaXr2gHS9JoCEdAl9GouCf6GnV9lChoBkdAcKUyEcsDn2gHTQQBaAhHQJfRrq1PWQR1fZQoaAZHQHMfV6qsEJVoB0vuaAhHQJfTOHP/rB11fZQoaAZHQG8xkeZG8VZoB0vkaAhHQJfTXb5/LDB1fZQoaAZHQHGDhgRbr1NoB0vvaAhHQJfTqMNtqHp1fZQoaAZHQHNANIClrM1oB0v1aAhHQJfUPWpZOi51fZQoaAZHQG1/qH446wNoB0vsaAhHQJfUgh2W6bx1fZQoaAZHQHKHMIeHSF5oB0v+aAhHQJfVJKZlWfd1fZQoaAZHQHCG3bVSXMRoB0v5aAhHQJfVIqLCN0h1fZQoaAZHQHB97PldTpBoB0vkaAhHQJfV2wjdHlR1fZQoaAZHQHGvZQ+EAYJoB0v+aAhHQJfWOqCHymR1fZQoaAZHQHBBsU21lXloB0v9aAhHQJfWaeGwiaB1fZQoaAZHQHFpg7PppvhoB00QAWgIR0CX10iS7oStdX2UKGgGR0By5wNvwVj7aAdNFQFoCEdAl9iS/9Hc13V9lChoBkdAcm1yp71Iy2gHTQEBaAhHQJfYom/nGKh1fZQoaAZHQHHPa8g6ltVoB00NAWgIR0CX2P/0dzXCdX2UKGgGR0BydMNlRP43aAdNCAFoCEdAl9qIDgZTAHV9lChoBkdAb5zmPHT7VWgHS/JoCEdAl9rxuXNTtXV9lChoBkdAcU9U4JeE7GgHTQ4BaAhHQJfbLNmlImR1fZQoaAZHQHInk1qFh5RoB0vbaAhHQJfbQ2Q4jr11fZQoaAZHQHOIBTn7pFFoB00dAWgIR0CX20rnTy8SdX2UKGgGR0BfaoScslLOaAdN6ANoCEdAl9udqQA+6nV9lChoBkdAcbmsKsuFpWgHS/FoCEdAl9vSoS+QEXV9lChoBkdAcSEmqYJE6WgHTRMBaAhHQJfcGDkELYx1fZQoaAZHQG+qljurp7loB0vvaAhHQJfcun4wh4d1fZQoaAZHQHHc3mFJxvNoB00RAWgIR0CX3TW3jMmndX2UKGgGR0BxD9aJQ+EAaAdNBwFoCEdAl913DBMzuXV9lChoBkdAbnn5+pfhM2gHS+xoCEdAl92eN5t3wHV9lChoBkdAcoQ68xsVL2gHS/BoCEdAl97R/ViF03V9lChoBkdAccXbkOqeb2gHTQ0BaAhHQJff5y3kPtl1fZQoaAZHQHDooh6jWTZoB00jAWgIR0CX4B17IDHPdX2UKGgGR0Bwafsw+MZQaAdL5WgIR0CX4FtoBaLXdX2UKGgGR0By5z4TK1XvaAdL42gIR0CYBmGcFyJbdX2UKGgGR0BuWxrFfiPyaAdL52gIR0CYBmHTqjagdX2UKGgGR0ByEV+c6NlzaAdL4WgIR0CYBqWAf+0gdX2UKGgGR0BxKcL1EmY0aAdL+mgIR0CYBqz+3pfQdX2UKGgGR0Bwo6o4uK4yaAdL92gIR0CYBuYJmdy1dX2UKGgGR0BwZ5dgOSW7aAdL7GgIR0CYByT3Zf2LdX2UKGgGR0Bw1GKZUkv9aAdL42gIR0CYBy5qdpZfdX2UKGgGR0ByhYAyVObiaAdL4WgIR0CYB7vr4WUKdX2UKGgGR0Bv5LxG2CumaAdL8GgIR0CYCJeANG3GdX2UKGgGR0Budxw2l2vCaAdL9GgIR0CYCPRyfcvedX2UKGgGR0Byygxgy/KyaAdL82gIR0CYCmJdB0IUdX2UKGgGR0Bxz2pPykKvaAdNKQFoCEdAmAp6B7NSqHV9lChoBkdAbaeIhQm/nGgHS9BoCEdAmArKc/dIoXV9lChoBkdAcW89QGfPHGgHS9loCEdAmAwYcvM8o3V9lChoBkdAcKgJqZc9n2gHTQYBaAhHQJgMRh1DBuZ1fZQoaAZHQGHtIpYs/Y9oB03oA2gIR0CYDKC5mRNidX2UKGgGR0ByIz3sXzlLaAdNBgFoCEdAmAzEoScslXV9lChoBkdAb4l+6RQrMGgHS+1oCEdAmAz/oV2zOXV9lChoBkdAcRoh9b5dnmgHS+hoCEdAmA0aPKdQPHV9lChoBkdAcKJNliBoVWgHS/doCEdAmA1A8wHqvHV9lChoBkdAcfnDJEH+qGgHS/ZoCEdAmA2v2f02+HV9lChoBkdAcTp0cfeUIWgHS+NoCEdAmA3c580DU3V9lChoBkdActAeKbayr2gHTQcBaAhHQJgOGQQtjCp1fZQoaAZHQHKBfHcUM5RoB0vVaAhHQJgOVnRLK3d1fZQoaAZHQHLUopH7P6doB00MAWgIR0CYEBdilSCOdX2UKGgGR0BwSZPwd8zAaAdL32gIR0CYEF7sv7FbdX2UKGgGR0ButN29tdiVaAdL4WgIR0CYEMmlImPYdX2UKGgGR0BvhZ+WnjyXaAdL1mgIR0CYEZ8VYZEVdX2UKGgGR0BxkfWOIZZTaAdLz2gIR0CYEgJPqLTAdX2UKGgGR0BzhsM3IdU9aAdNKgFoCEdAmBKCiZfD13V9lChoBkdAcehnfVI7NmgHS95oCEdAmBKsdxQzlHV9lChoBkdAcW43VCojwGgHS+VoCEdAmBLzkZJkG3V9lChoBkdAcQfnMMZxaWgHS/xoCEdAmBMQ+EAYHnV9lChoBkdAcIkyMDOkcmgHS+VoCEdAmBMcYZVGTnV9lChoBkdAcN9SamXPaGgHS+toCEdAmBOxB3RoiHV9lChoBkdAb01K6FuejGgHS+poCEdAmBPg8r7O3XV9lChoBkdAc64EjgQ6IWgHS+VoCEdAmBRFV1fVqnV9lChoBkdAcltVnEl3QmgHTQIBaAhHQJgUsp/gBLh1fZQoaAZHQHDHWz0HyEtoB0vVaAhHQJgWCmxdIG11fZQoaAZHQG64Gvnr6cloB0voaAhHQJgWQvf0mMR1fZQoaAZHQHOHWkep4r1oB0vpaAhHQJgX0GGEf1Z1fZQoaAZHQG2CiEg4ffZoB0vtaAhHQJgYUn7YTTR1fZQoaAZHQHBl7DMvAXVoB000AWgIR0CYGRqzZ6D5dX2UKGgGR0BypvCxeLNwaAdL82gIR0CYGTGpda+wdX2UKGgGR0ByIiqhlDneaAdNAQFoCEdAmBlqeGwiaHV9lChoBkdAcKqrN4Z/C2gHS/9oCEdAmBnYAwPAf3V9lChoBkdAbz9LCemNzmgHS+ZoCEdAmBn9GiHqNnV9lChoBkdAcVtpYs/Y8WgHTRUBaAhHQJgaihrWRRx1fZQoaAZHQHJekU9IPLBoB00FAWgIR0CYGvP91loUdX2UKGgGR0BxJe7qY7aJaAdNJQFoCEdAmBr+vUz9CXV9lChoBkdAcT4XzlLeymgHS/loCEdAmBuDSkTHsHV9lChoBkdAckIjMmnfmGgHTRkBaAhHQJgb290zTF51fZQoaAZHQHNAfwd8zANoB00RAWgIR0CYHUrtVrAQdX2UKGgGR0Bwd5R8+iaiaAdL12gIR0CYHYjlPrOadX2UKGgGR0Byi0oWpIczaAdNFQFoCEdAmB2jj3mFJ3V9lChoBkdAcJjB5ooNNWgHS/FoCEdAmB67QC0WuXV9lChoBkdAcXSP/7zkIWgHS9xoCEdAmB8vRiPQwHV9lChoBkdAcLGoHcDbJ2gHS/5oCEdAmB/nmV7hN3V9lChoBkdAcAPdTYNAkmgHS+ZoCEdAmCANXLeQ+3V9lChoBkdAbuXOB19v0mgHS/BoCEdAmCAs/UvwmXV9lChoBkdAcj2yN4qwyWgHTQsBaAhHQJggMy44Ia91fZQoaAZHQF6aB8x9G7VoB03oA2gIR0CYIMp/gBLgdX2UKGgGR0Bvsp/y5I6KaAdL52gIR0CYIQSlWOp9dX2UKGgGR0Byhg4gieNDaAdL92gIR0CYIQJuEVWTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d1f84467783f20a77ba7c59e356d93ab72e4d0601749afed22891bda4ff3671
3
+ size 147931
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e779f79f0a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e779f79f130>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e779f79f1c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e779f79f250>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e779f79f2e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e779f79f370>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e779f79f400>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e779f79f490>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e779f79f520>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e779f79f5b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e779f79f640>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e779f79f6d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e779f72c180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1735412765036952179,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM344DzHVLI/vQq/PjuMRL4aWbM67GakPQAAAAAAAAAAU9vLPlvmKz+a5mE9wWnivvZ0nj4sjh6+AAAAAAAAAABQSHW+798DPxLgHz5ktbq+S3yyvXJLpD0AAAAAAAAAAM0loryNoWQ/SrzuvEpT9r62IMK8k2mvvAAAAAAAAAAAZgu6PEhpk7pORZw0Pf1pMLpEKjtnIEqzAACAPwAAgD/NqnA+PrJrP6qeoz4ZUge/FsOePmVUDz0AAAAAAAAAAE1w1D2LC8I/TvoeP55NvD1GDT49MA8fPgAAAAAAAAAAmtktOkUxuD8lNAA8phbJPYJMBrtoSv06AAAAAAAAAACGu34+JLliP4t0+D6GsRK/8FW0PjoErj0AAAAAAAAAABp+uD17fIG6GtT6Mu/GejDpwTE7Mp+eswAAgD8AAIA/mnUnvimOaz6w+5g+JUJyvnBYQDzKOF09AAAAAAAAAABNPCc+bH09PoXZCr7Fqma+WMFOPRnHqr0AAAAAAAAAAAYPJj5KVWU++so4vnAIb7734iw9FsjfvAAAAAAAAAAAwNUaPk+pHLywYkI8NyCsuoC9hr2gCI+7AACAPwAAgD/NAuk9TEGFP0gGfD4nSRK/DCzkPaMk+T0AAAAAAAAAAOAUKj5pXUa8CBdnOy4juLmz9Ke9W0CUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGsXTd+G4+MAWyUS+uMAXSUR0CXz43JPqLTdX2UKGgGR0BzG2+36Q/5aAdL+2gIR0CXz8QZGax5dX2UKGgGR0ByifDn/1g6aAdNHAFoCEdAl9AYHs1KoXV9lChoBkdAcIqi3G4qgGgHS+poCEdAl9EWYBvJinV9lChoBkdAbypwCKaXr2gHS9JoCEdAl9GouCf6GnV9lChoBkdAcKUyEcsDn2gHTQQBaAhHQJfRrq1PWQR1fZQoaAZHQHMfV6qsEJVoB0vuaAhHQJfTOHP/rB11fZQoaAZHQG8xkeZG8VZoB0vkaAhHQJfTXb5/LDB1fZQoaAZHQHGDhgRbr1NoB0vvaAhHQJfTqMNtqHp1fZQoaAZHQHNANIClrM1oB0v1aAhHQJfUPWpZOi51fZQoaAZHQG1/qH446wNoB0vsaAhHQJfUgh2W6bx1fZQoaAZHQHKHMIeHSF5oB0v+aAhHQJfVJKZlWfd1fZQoaAZHQHCG3bVSXMRoB0v5aAhHQJfVIqLCN0h1fZQoaAZHQHB97PldTpBoB0vkaAhHQJfV2wjdHlR1fZQoaAZHQHGvZQ+EAYJoB0v+aAhHQJfWOqCHymR1fZQoaAZHQHBBsU21lXloB0v9aAhHQJfWaeGwiaB1fZQoaAZHQHFpg7PppvhoB00QAWgIR0CX10iS7oStdX2UKGgGR0By5wNvwVj7aAdNFQFoCEdAl9iS/9Hc13V9lChoBkdAcm1yp71Iy2gHTQEBaAhHQJfYom/nGKh1fZQoaAZHQHHPa8g6ltVoB00NAWgIR0CX2P/0dzXCdX2UKGgGR0BydMNlRP43aAdNCAFoCEdAl9qIDgZTAHV9lChoBkdAb5zmPHT7VWgHS/JoCEdAl9rxuXNTtXV9lChoBkdAcU9U4JeE7GgHTQ4BaAhHQJfbLNmlImR1fZQoaAZHQHInk1qFh5RoB0vbaAhHQJfbQ2Q4jr11fZQoaAZHQHOIBTn7pFFoB00dAWgIR0CX20rnTy8SdX2UKGgGR0BfaoScslLOaAdN6ANoCEdAl9udqQA+6nV9lChoBkdAcbmsKsuFpWgHS/FoCEdAl9vSoS+QEXV9lChoBkdAcSEmqYJE6WgHTRMBaAhHQJfcGDkELYx1fZQoaAZHQG+qljurp7loB0vvaAhHQJfcun4wh4d1fZQoaAZHQHHc3mFJxvNoB00RAWgIR0CX3TW3jMmndX2UKGgGR0BxD9aJQ+EAaAdNBwFoCEdAl913DBMzuXV9lChoBkdAbnn5+pfhM2gHS+xoCEdAl92eN5t3wHV9lChoBkdAcoQ68xsVL2gHS/BoCEdAl97R/ViF03V9lChoBkdAccXbkOqeb2gHTQ0BaAhHQJff5y3kPtl1fZQoaAZHQHDooh6jWTZoB00jAWgIR0CX4B17IDHPdX2UKGgGR0Bwafsw+MZQaAdL5WgIR0CX4FtoBaLXdX2UKGgGR0By5z4TK1XvaAdL42gIR0CYBmGcFyJbdX2UKGgGR0BuWxrFfiPyaAdL52gIR0CYBmHTqjagdX2UKGgGR0ByEV+c6NlzaAdL4WgIR0CYBqWAf+0gdX2UKGgGR0BxKcL1EmY0aAdL+mgIR0CYBqz+3pfQdX2UKGgGR0Bwo6o4uK4yaAdL92gIR0CYBuYJmdy1dX2UKGgGR0BwZ5dgOSW7aAdL7GgIR0CYByT3Zf2LdX2UKGgGR0Bw1GKZUkv9aAdL42gIR0CYBy5qdpZfdX2UKGgGR0ByhYAyVObiaAdL4WgIR0CYB7vr4WUKdX2UKGgGR0Bv5LxG2CumaAdL8GgIR0CYCJeANG3GdX2UKGgGR0Budxw2l2vCaAdL9GgIR0CYCPRyfcvedX2UKGgGR0Byygxgy/KyaAdL82gIR0CYCmJdB0IUdX2UKGgGR0Bxz2pPykKvaAdNKQFoCEdAmAp6B7NSqHV9lChoBkdAbaeIhQm/nGgHS9BoCEdAmArKc/dIoXV9lChoBkdAcW89QGfPHGgHS9loCEdAmAwYcvM8o3V9lChoBkdAcKgJqZc9n2gHTQYBaAhHQJgMRh1DBuZ1fZQoaAZHQGHtIpYs/Y9oB03oA2gIR0CYDKC5mRNidX2UKGgGR0ByIz3sXzlLaAdNBgFoCEdAmAzEoScslXV9lChoBkdAb4l+6RQrMGgHS+1oCEdAmAz/oV2zOXV9lChoBkdAcRoh9b5dnmgHS+hoCEdAmA0aPKdQPHV9lChoBkdAcKJNliBoVWgHS/doCEdAmA1A8wHqvHV9lChoBkdAcfnDJEH+qGgHS/ZoCEdAmA2v2f02+HV9lChoBkdAcTp0cfeUIWgHS+NoCEdAmA3c580DU3V9lChoBkdActAeKbayr2gHTQcBaAhHQJgOGQQtjCp1fZQoaAZHQHKBfHcUM5RoB0vVaAhHQJgOVnRLK3d1fZQoaAZHQHLUopH7P6doB00MAWgIR0CYEBdilSCOdX2UKGgGR0BwSZPwd8zAaAdL32gIR0CYEF7sv7FbdX2UKGgGR0ButN29tdiVaAdL4WgIR0CYEMmlImPYdX2UKGgGR0BvhZ+WnjyXaAdL1mgIR0CYEZ8VYZEVdX2UKGgGR0BxkfWOIZZTaAdLz2gIR0CYEgJPqLTAdX2UKGgGR0BzhsM3IdU9aAdNKgFoCEdAmBKCiZfD13V9lChoBkdAcehnfVI7NmgHS95oCEdAmBKsdxQzlHV9lChoBkdAcW43VCojwGgHS+VoCEdAmBLzkZJkG3V9lChoBkdAcQfnMMZxaWgHS/xoCEdAmBMQ+EAYHnV9lChoBkdAcIkyMDOkcmgHS+VoCEdAmBMcYZVGTnV9lChoBkdAcN9SamXPaGgHS+toCEdAmBOxB3RoiHV9lChoBkdAb01K6FuejGgHS+poCEdAmBPg8r7O3XV9lChoBkdAc64EjgQ6IWgHS+VoCEdAmBRFV1fVqnV9lChoBkdAcltVnEl3QmgHTQIBaAhHQJgUsp/gBLh1fZQoaAZHQHDHWz0HyEtoB0vVaAhHQJgWCmxdIG11fZQoaAZHQG64Gvnr6cloB0voaAhHQJgWQvf0mMR1fZQoaAZHQHOHWkep4r1oB0vpaAhHQJgX0GGEf1Z1fZQoaAZHQG2CiEg4ffZoB0vtaAhHQJgYUn7YTTR1fZQoaAZHQHBl7DMvAXVoB000AWgIR0CYGRqzZ6D5dX2UKGgGR0BypvCxeLNwaAdL82gIR0CYGTGpda+wdX2UKGgGR0ByIiqhlDneaAdNAQFoCEdAmBlqeGwiaHV9lChoBkdAcKqrN4Z/C2gHS/9oCEdAmBnYAwPAf3V9lChoBkdAbz9LCemNzmgHS+ZoCEdAmBn9GiHqNnV9lChoBkdAcVtpYs/Y8WgHTRUBaAhHQJgaihrWRRx1fZQoaAZHQHJekU9IPLBoB00FAWgIR0CYGvP91loUdX2UKGgGR0BxJe7qY7aJaAdNJQFoCEdAmBr+vUz9CXV9lChoBkdAcT4XzlLeymgHS/loCEdAmBuDSkTHsHV9lChoBkdAckIjMmnfmGgHTRkBaAhHQJgb290zTF51fZQoaAZHQHNAfwd8zANoB00RAWgIR0CYHUrtVrAQdX2UKGgGR0Bwd5R8+iaiaAdL12gIR0CYHYjlPrOadX2UKGgGR0Byi0oWpIczaAdNFQFoCEdAmB2jj3mFJ3V9lChoBkdAcJjB5ooNNWgHS/FoCEdAmB67QC0WuXV9lChoBkdAcXSP/7zkIWgHS9xoCEdAmB8vRiPQwHV9lChoBkdAcLGoHcDbJ2gHS/5oCEdAmB/nmV7hN3V9lChoBkdAcAPdTYNAkmgHS+ZoCEdAmCANXLeQ+3V9lChoBkdAbuXOB19v0mgHS/BoCEdAmCAs/UvwmXV9lChoBkdAcj2yN4qwyWgHTQsBaAhHQJggMy44Ia91fZQoaAZHQF6aB8x9G7VoB03oA2gIR0CYIMp/gBLgdX2UKGgGR0Bvsp/y5I6KaAdL52gIR0CYIQSlWOp9dX2UKGgGR0Byhg4gieNDaAdL92gIR0CYIQJuEVWTdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 496,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d667b2ae6b46f46db0d10d674b5fa56b9ba02e3f6681e0b41873c321743ee291
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d9ec294c784293527039805c64a269988c4f4f99cbe70f1e999937bd25ec503
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (180 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 280.09722209999995, "std_reward": 21.282056299776944, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-28T19:36:16.980850"}