reinforced-kathi commited on
Commit
8197cc4
1 Parent(s): c5fa0f9

First commit for lunar lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 272.15 +/- 18.48
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c024a7fc820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c024a7fc8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c024a7fc940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c024a7fc9d0>", "_build": "<function ActorCriticPolicy._build at 0x7c024a7fca60>", "forward": "<function ActorCriticPolicy.forward at 0x7c024a7fcaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c024a7fcb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c024a7fcc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7c024a7fcca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c024a7fcd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c024a7fcdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c024a7fce50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c024a798e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729328303175471378, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOt7w9hii7Bqr0O65YKDyA+By8YIsWPQAAgD8AAIA/moqXPVGoOD7vcIC+g1VxvgqKdzulm169AAAAAAAAAABmlsQ90higPxx0DD9aPue+SRHjPRXKjj4AAAAAAAAAAOadQD17GoO691U0uNowaLOsxZM5OLBONwAAgD8AAIA/gCUhvemSEryiZSQ9vtAIPZ0rfr3mkd49AACAPwAAgD9msvg9GXtcP8sG8j2GFfe+6oVVPsoyxz0AAAAAAAAAAIC4Lb3jcB89q2bPPJr8M75cj289P94cvQAAAAAAAAAAAJKevHsmgLrmvvS97KAmsyzAoboGr0UzAACAPwAAgD+Nr6m911QGuxYLAj0N43Y8l32APKWcVr0AAAAAAACAP5opSL0pOBW6AoQiPO1bUrUHeIY6+upHtAAAgD8AAIA/mpyYPPrqtj91+pM+3quLPYW/CjtdOLw9AAAAAAAAAAAABAe9caBvu5pW7z1BQPC9QpidvMoYH78AAIA/AACAP7prMj5qDEw/xiYBPSAm5b4cOiw+fsKfPAAAAAAAAAAA+hwwvh1eZj5Rwqs+7p52vsm/Cj2YYZI5AAAAAAAAAADa4Lw9eBitPqYcYb1Rx7W+G1eSPO7YaL0AAAAAAAAAAD1ptz4Mjlo/cj7KPYiSB79o/7I+J6EzvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDiaisXBP+MAWyUS/SMAXSUR0CZu6G4I8hcdX2UKGgGR0BzHXDpC8e0aAdNKgFoCEdAmbvAYgq3E3V9lChoBkdAZDPnyup0fmgHTegDaAhHQJm8q8RL9Mt1fZQoaAZHQG6tL1uivgZoB00VAWgIR0CZvPoo/iYLdX2UKGgGR0BxjxGViWmhaAdL52gIR0CZvQgK4QSSdX2UKGgGR0ByTmCK77KraAdL8mgIR0CZvh8274BWdX2UKGgGR0Bw8hbJOnEVaAdNVAFoCEdAmb4vNJOFg3V9lChoBkdAcljrDIikf2gHTQIBaAhHQJm+R94NZvF1fZQoaAZHQHC8lBt1p0xoB0v7aAhHQJm/b5ckdFR1fZQoaAZHQHK0cd92HL1oB01gAWgIR0CZwFBzmwJPdX2UKGgGR0Bx1qNp/PPcaAdL62gIR0CZwIVpsXSCdX2UKGgGR0Bx/uTgVGkOaAdNQQFoCEdAmcC84xUNrnV9lChoBkdAcPHlEJBw/GgHTQgBaAhHQJnA0rupjtp1fZQoaAZHQHMr4NEw35xoB009AWgIR0CZwcK1G9YfdX2UKGgGR0BxGg6ySmqHaAdL4WgIR0CZw4vBJqZddX2UKGgGR0Bxihhz/6wdaAdL32gIR0CZw80jkdWAdX2UKGgGR0BvZuMS9M9KaAdL5GgIR0CZxAMwUQCkdX2UKGgGR0BvyxXCCSRsaAdNJQFoCEdAmcTW5c1O03V9lChoBkdAbicxFAmiQGgHTZMBaAhHQJnE+qm0mdB1fZQoaAZHQHJUttIkJKJoB01iAWgIR0CZxpFcIJJHdX2UKGgGR0Bvksq4H5aeaAdNHwFoCEdAmcbjeO4oZ3V9lChoBkdAcSNmxMWXTmgHTSkBaAhHQJnHVLM9r451fZQoaAZHQHF+YOhCdBloB00tAWgIR0CZx13pwCKadX2UKGgGR0BjaofdRBNVaAdNvwNoCEdAmcg7h3qzJXV9lChoBkdAcMumzByjpWgHS/9oCEdAmciAMDwH7nV9lChoBkdAb+pGG21D0GgHTQwBaAhHQJnIfr4WUKR1fZQoaAZHQHH31PznRsxoB00XAWgIR0CZyOollbu/dX2UKGgGR0BvPxm9QGfPaAdNFQFoCEdAmckkaMrEtXV9lChoBkdAcnNjO9nK4mgHTUEBaAhHQJnJLVhCtzV1fZQoaAZHQG/gmxD9fkZoB00aAWgIR0CZygz0pVjqdX2UKGgGR0Bz1RhE0BOpaAdL+GgIR0CZywTq0MPSdX2UKGgGR0A4idOZb6gvaAdLs2gIR0CZzC+10DEFdX2UKGgGR0ByFQBjnV5KaAdNIwFoCEdAmc0n5i3G43V9lChoBkdAcZWH9WIXTGgHTSwBaAhHQJnNknhKlHl1fZQoaAZHQHNWU9IPK+1oB0vwaAhHQJnNqunuRcN1fZQoaAZHQHPVX0btJFtoB0v/aAhHQJnNz0yxiXp1fZQoaAZHQHLcHMY/FBJoB0vxaAhHQJnOIYO2AoZ1fZQoaAZHQFBn2vStvGZoB0vQaAhHQJnOP5j6N2l1fZQoaAZHQHB+Wb1AZ89oB011AWgIR0CZzmLGaQV9dX2UKGgGR0BzBOdoWYWtaAdNhQFoCEdAmc7zot+TeXV9lChoBkdAcPW2AG0NSmgHS/RoCEdAmc+VYlpoK3V9lChoBkdAcXpollbu+mgHTREBaAhHQJnPqtMfzSV1fZQoaAZHQHLWlUhmoR9oB0v+aAhHQJnQNEd/8VJ1fZQoaAZHQHNAu1v2oNxoB008AWgIR0CZ5i7g88s+dX2UKGgGR0BwfCwX668QaAdL9mgIR0CZ5lwNLDhtdX2UKGgGR0BvpmNxVAAyaAdNYQFoCEdAmeZ9EXtSh3V9lChoBkdAcgUUMXrMT2gHTTsBaAhHQJnni58Sf191fZQoaAZHQHCVX1rZampoB0vcaAhHQJno/KwIMSd1fZQoaAZHQG22EgfU4JhoB0vxaAhHQJnqTYg7o0R1fZQoaAZHQHCTPb9If8xoB00ZAWgIR0CZ6mTewcHXdX2UKGgGR0BwDmCUX531aAdNAgFoCEdAmeq1Yp2ECnV9lChoBkdAcRP7el9Br2gHS/BoCEdAmeulbVz6rXV9lChoBkdAcNVCmdiDumgHTTcBaAhHQJntwnNPgvV1fZQoaAZHQG6bpXhfjS5oB001AWgIR0CZ7d1klNUPdX2UKGgGR0BxwVMoMKCyaAdNJAFoCEdAme6GaQV9GHV9lChoBkdAcb7n9ehPCWgHS+xoCEdAme7Xbuc+aHV9lChoBkdAcsY4rBj4H2gHTYQBaAhHQJnvJ74SHuZ1fZQoaAZHQHFXuPV/c35oB00YAWgIR0CZ73PfbblBdX2UKGgGR0BxYJJBgNPQaAdNMgFoCEdAmfBVXA/LT3V9lChoBkdAcBullsguAmgHS/5oCEdAmfD3G4qgAnV9lChoBkdAb8iZDRc/uGgHS/RoCEdAmfED8DSw4nV9lChoBkdAcoR5AQg9vGgHTRcBaAhHQJnx/3N9ph51fZQoaAZHQHHxbi2lVLloB0v/aAhHQJn0MbR4QjF1fZQoaAZHQHCDKu0TlDFoB0vraAhHQJn01fu1F6R1fZQoaAZHQHHQCo86mwdoB0v6aAhHQJn1e7ROUMZ1fZQoaAZHQHN9TbN8ma9oB00BAWgIR0CZ9hzQ/oq1dX2UKGgGR0BygvFKkEcLaAdL/mgIR0CZ99f/m1YydX2UKGgGR0BvEbRc/t6YaAdL7WgIR0CZ+AZTyauwdX2UKGgGR0BxWFULlV94aAdNGAFoCEdAmfgZ/CqIanV9lChoBkdAbpdX/YJ3PmgHS+poCEdAmfhMLKFIu3V9lChoBkdAcv+p8neBQWgHTQ0BaAhHQJn4Yd2gWad1fZQoaAZHQHCwS9VWCEpoB00bAWgIR0CZ+P2TgVGkdX2UKGgGR0BwStxwQ176aAdNCwFoCEdAmfptp7CzknV9lChoBkdAcFC0uDjBEmgHTTMBaAhHQJn6w8PnSv11fZQoaAZHQHFCvt2LYPJoB0vfaAhHQJn60eLehwl1fZQoaAZHQHHZprxiG35oB00RAWgIR0CZ+1Q0GeMAdX2UKGgGR0Bv16BbwBo3aAdNJAFoCEdAmfvlmjCYTnV9lChoBkdAcI2NiYsunWgHS+RoCEdAmfwTzAeq73V9lChoBkdAcPs9PDYRNGgHTQgBaAhHQJn9n0L+glF1fZQoaAZHQHMqqwIMSbpoB0v1aAhHQJn+BBomG/N1fZQoaAZHQHKv0HUtqYZoB0v+aAhHQJn/VhWo3rF1fZQoaAZHQHFUlsDW9UVoB0v2aAhHQJn/hVcUuct1fZQoaAZHQHEG141P3ztoB00nAWgIR0CaAeLA57w8dX2UKGgGR0BvMgwCbMHKaAdNQgFoCEdAmgJlKsdT53V9lChoBkdAcriKKYRdyGgHTSEBaAhHQJoCc9xIatN1fZQoaAZHQHDhLUTcqONoB01EAWgIR0CaAo+dsi0OdX2UKGgGR0Bx8FhOP/70aAdL/mgIR0CaAt42S+xodX2UKGgGR0ByeAJ3PiT/aAdNDQFoCEdAmgO/tIClrXV9lChoBkdAcWhRkVeruWgHTakBaAhHQJoD/zZpSJl1fZQoaAZHQG0YKzRhMJxoB03qAmgIR0CaBA13dKukdX2UKGgGR0BxKyoUBXCCaAdNBQFoCEdAmgQw6ySmqHV9lChoBkdAcHilenhsImgHS/doCEdAmgRn6dlNDnV9lChoBkdAcd75+pfhM2gHTSgBaAhHQJoEravicXp1fZQoaAZHQHGHh0MgEEFoB00ZAWgIR0CaBjRJ2+wldX2UKGgGR0ByYBcSoOx0aAdL/GgIR0CaB1pJwsGxdX2UKGgGR0Bw7SvX9R77aAdNEwFoCEdAmgiLnxJ/X3V9lChoBkdAcJQcWTHKfWgHS+poCEdAmgitt2s7uHV9lChoBkdAcA2zO5avBGgHTQgBaAhHQJoJhx//ech1fZQoaAZHQHFv9m+TNdJoB0vqaAhHQJoKjB2wFC91fZQoaAZHQHC96MefZmJoB0vkaAhHQJoK+K0lZ5l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5928869cb32072b172297f7570dea886175c56f183ac25a017721954cc90632
3
+ size 147968
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c024a7fc820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c024a7fc8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c024a7fc940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c024a7fc9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c024a7fca60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c024a7fcaf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c024a7fcb80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c024a7fcc10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c024a7fcca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c024a7fcd30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c024a7fcdc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c024a7fce50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c024a798e40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1729328303175471378,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADOt7w9hii7Bqr0O65YKDyA+By8YIsWPQAAgD8AAIA/moqXPVGoOD7vcIC+g1VxvgqKdzulm169AAAAAAAAAABmlsQ90higPxx0DD9aPue+SRHjPRXKjj4AAAAAAAAAAOadQD17GoO691U0uNowaLOsxZM5OLBONwAAgD8AAIA/gCUhvemSEryiZSQ9vtAIPZ0rfr3mkd49AACAPwAAgD9msvg9GXtcP8sG8j2GFfe+6oVVPsoyxz0AAAAAAAAAAIC4Lb3jcB89q2bPPJr8M75cj289P94cvQAAAAAAAAAAAJKevHsmgLrmvvS97KAmsyzAoboGr0UzAACAPwAAgD+Nr6m911QGuxYLAj0N43Y8l32APKWcVr0AAAAAAACAP5opSL0pOBW6AoQiPO1bUrUHeIY6+upHtAAAgD8AAIA/mpyYPPrqtj91+pM+3quLPYW/CjtdOLw9AAAAAAAAAAAABAe9caBvu5pW7z1BQPC9QpidvMoYH78AAIA/AACAP7prMj5qDEw/xiYBPSAm5b4cOiw+fsKfPAAAAAAAAAAA+hwwvh1eZj5Rwqs+7p52vsm/Cj2YYZI5AAAAAAAAAADa4Lw9eBitPqYcYb1Rx7W+G1eSPO7YaL0AAAAAAAAAAD1ptz4Mjlo/cj7KPYiSB79o/7I+J6EzvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDiaisXBP+MAWyUS/SMAXSUR0CZu6G4I8hcdX2UKGgGR0BzHXDpC8e0aAdNKgFoCEdAmbvAYgq3E3V9lChoBkdAZDPnyup0fmgHTegDaAhHQJm8q8RL9Mt1fZQoaAZHQG6tL1uivgZoB00VAWgIR0CZvPoo/iYLdX2UKGgGR0BxjxGViWmhaAdL52gIR0CZvQgK4QSSdX2UKGgGR0ByTmCK77KraAdL8mgIR0CZvh8274BWdX2UKGgGR0Bw8hbJOnEVaAdNVAFoCEdAmb4vNJOFg3V9lChoBkdAcljrDIikf2gHTQIBaAhHQJm+R94NZvF1fZQoaAZHQHC8lBt1p0xoB0v7aAhHQJm/b5ckdFR1fZQoaAZHQHK0cd92HL1oB01gAWgIR0CZwFBzmwJPdX2UKGgGR0Bx1qNp/PPcaAdL62gIR0CZwIVpsXSCdX2UKGgGR0Bx/uTgVGkOaAdNQQFoCEdAmcC84xUNrnV9lChoBkdAcPHlEJBw/GgHTQgBaAhHQJnA0rupjtp1fZQoaAZHQHMr4NEw35xoB009AWgIR0CZwcK1G9YfdX2UKGgGR0BxGg6ySmqHaAdL4WgIR0CZw4vBJqZddX2UKGgGR0Bxihhz/6wdaAdL32gIR0CZw80jkdWAdX2UKGgGR0BvZuMS9M9KaAdL5GgIR0CZxAMwUQCkdX2UKGgGR0BvyxXCCSRsaAdNJQFoCEdAmcTW5c1O03V9lChoBkdAbicxFAmiQGgHTZMBaAhHQJnE+qm0mdB1fZQoaAZHQHJUttIkJKJoB01iAWgIR0CZxpFcIJJHdX2UKGgGR0Bvksq4H5aeaAdNHwFoCEdAmcbjeO4oZ3V9lChoBkdAcSNmxMWXTmgHTSkBaAhHQJnHVLM9r451fZQoaAZHQHF+YOhCdBloB00tAWgIR0CZx13pwCKadX2UKGgGR0BjaofdRBNVaAdNvwNoCEdAmcg7h3qzJXV9lChoBkdAcMumzByjpWgHS/9oCEdAmciAMDwH7nV9lChoBkdAb+pGG21D0GgHTQwBaAhHQJnIfr4WUKR1fZQoaAZHQHH31PznRsxoB00XAWgIR0CZyOollbu/dX2UKGgGR0BvPxm9QGfPaAdNFQFoCEdAmckkaMrEtXV9lChoBkdAcnNjO9nK4mgHTUEBaAhHQJnJLVhCtzV1fZQoaAZHQG/gmxD9fkZoB00aAWgIR0CZygz0pVjqdX2UKGgGR0Bz1RhE0BOpaAdL+GgIR0CZywTq0MPSdX2UKGgGR0A4idOZb6gvaAdLs2gIR0CZzC+10DEFdX2UKGgGR0ByFQBjnV5KaAdNIwFoCEdAmc0n5i3G43V9lChoBkdAcZWH9WIXTGgHTSwBaAhHQJnNknhKlHl1fZQoaAZHQHNWU9IPK+1oB0vwaAhHQJnNqunuRcN1fZQoaAZHQHPVX0btJFtoB0v/aAhHQJnNz0yxiXp1fZQoaAZHQHLcHMY/FBJoB0vxaAhHQJnOIYO2AoZ1fZQoaAZHQFBn2vStvGZoB0vQaAhHQJnOP5j6N2l1fZQoaAZHQHB+Wb1AZ89oB011AWgIR0CZzmLGaQV9dX2UKGgGR0BzBOdoWYWtaAdNhQFoCEdAmc7zot+TeXV9lChoBkdAcPW2AG0NSmgHS/RoCEdAmc+VYlpoK3V9lChoBkdAcXpollbu+mgHTREBaAhHQJnPqtMfzSV1fZQoaAZHQHLWlUhmoR9oB0v+aAhHQJnQNEd/8VJ1fZQoaAZHQHNAu1v2oNxoB008AWgIR0CZ5i7g88s+dX2UKGgGR0BwfCwX668QaAdL9mgIR0CZ5lwNLDhtdX2UKGgGR0BvpmNxVAAyaAdNYQFoCEdAmeZ9EXtSh3V9lChoBkdAcgUUMXrMT2gHTTsBaAhHQJnni58Sf191fZQoaAZHQHCVX1rZampoB0vcaAhHQJno/KwIMSd1fZQoaAZHQG22EgfU4JhoB0vxaAhHQJnqTYg7o0R1fZQoaAZHQHCTPb9If8xoB00ZAWgIR0CZ6mTewcHXdX2UKGgGR0BwDmCUX531aAdNAgFoCEdAmeq1Yp2ECnV9lChoBkdAcRP7el9Br2gHS/BoCEdAmeulbVz6rXV9lChoBkdAcNVCmdiDumgHTTcBaAhHQJntwnNPgvV1fZQoaAZHQG6bpXhfjS5oB001AWgIR0CZ7d1klNUPdX2UKGgGR0BxwVMoMKCyaAdNJAFoCEdAme6GaQV9GHV9lChoBkdAcb7n9ehPCWgHS+xoCEdAme7Xbuc+aHV9lChoBkdAcsY4rBj4H2gHTYQBaAhHQJnvJ74SHuZ1fZQoaAZHQHFXuPV/c35oB00YAWgIR0CZ73PfbblBdX2UKGgGR0BxYJJBgNPQaAdNMgFoCEdAmfBVXA/LT3V9lChoBkdAcBullsguAmgHS/5oCEdAmfD3G4qgAnV9lChoBkdAb8iZDRc/uGgHS/RoCEdAmfED8DSw4nV9lChoBkdAcoR5AQg9vGgHTRcBaAhHQJnx/3N9ph51fZQoaAZHQHHxbi2lVLloB0v/aAhHQJn0MbR4QjF1fZQoaAZHQHCDKu0TlDFoB0vraAhHQJn01fu1F6R1fZQoaAZHQHHQCo86mwdoB0v6aAhHQJn1e7ROUMZ1fZQoaAZHQHN9TbN8ma9oB00BAWgIR0CZ9hzQ/oq1dX2UKGgGR0BygvFKkEcLaAdL/mgIR0CZ99f/m1YydX2UKGgGR0BvEbRc/t6YaAdL7WgIR0CZ+AZTyauwdX2UKGgGR0BxWFULlV94aAdNGAFoCEdAmfgZ/CqIanV9lChoBkdAbpdX/YJ3PmgHS+poCEdAmfhMLKFIu3V9lChoBkdAcv+p8neBQWgHTQ0BaAhHQJn4Yd2gWad1fZQoaAZHQHCwS9VWCEpoB00bAWgIR0CZ+P2TgVGkdX2UKGgGR0BwStxwQ176aAdNCwFoCEdAmfptp7CzknV9lChoBkdAcFC0uDjBEmgHTTMBaAhHQJn6w8PnSv11fZQoaAZHQHFCvt2LYPJoB0vfaAhHQJn60eLehwl1fZQoaAZHQHHZprxiG35oB00RAWgIR0CZ+1Q0GeMAdX2UKGgGR0Bv16BbwBo3aAdNJAFoCEdAmfvlmjCYTnV9lChoBkdAcI2NiYsunWgHS+RoCEdAmfwTzAeq73V9lChoBkdAcPs9PDYRNGgHTQgBaAhHQJn9n0L+glF1fZQoaAZHQHMqqwIMSbpoB0v1aAhHQJn+BBomG/N1fZQoaAZHQHKv0HUtqYZoB0v+aAhHQJn/VhWo3rF1fZQoaAZHQHFUlsDW9UVoB0v2aAhHQJn/hVcUuct1fZQoaAZHQHEG141P3ztoB00nAWgIR0CaAeLA57w8dX2UKGgGR0BvMgwCbMHKaAdNQgFoCEdAmgJlKsdT53V9lChoBkdAcriKKYRdyGgHTSEBaAhHQJoCc9xIatN1fZQoaAZHQHDhLUTcqONoB01EAWgIR0CaAo+dsi0OdX2UKGgGR0Bx8FhOP/70aAdL/mgIR0CaAt42S+xodX2UKGgGR0ByeAJ3PiT/aAdNDQFoCEdAmgO/tIClrXV9lChoBkdAcWhRkVeruWgHTakBaAhHQJoD/zZpSJl1fZQoaAZHQG0YKzRhMJxoB03qAmgIR0CaBA13dKukdX2UKGgGR0BxKyoUBXCCaAdNBQFoCEdAmgQw6ySmqHV9lChoBkdAcHilenhsImgHS/doCEdAmgRn6dlNDnV9lChoBkdAcd75+pfhM2gHTSgBaAhHQJoEravicXp1fZQoaAZHQHGHh0MgEEFoB00ZAWgIR0CaBjRJ2+wldX2UKGgGR0ByYBcSoOx0aAdL/GgIR0CaB1pJwsGxdX2UKGgGR0Bw7SvX9R77aAdNEwFoCEdAmgiLnxJ/X3V9lChoBkdAcJQcWTHKfWgHS+poCEdAmgitt2s7uHV9lChoBkdAcA2zO5avBGgHTQgBaAhHQJoJhx//ech1fZQoaAZHQHFv9m+TNdJoB0vqaAhHQJoKjB2wFC91fZQoaAZHQHC96MefZmJoB0vkaAhHQJoK+K0lZ5l1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3acf9b0e2adb9a8f423123400aa74a9ceae0213408f8f723c49294d627cf6486
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:302913e8d5d6fcc5f85f87c6f2d1c81e72484281369ec76ff94b7efeea356959
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (182 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.15353159999995, "std_reward": 18.480050261124422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-19T09:37:20.469972"}