|
from flask import Flask, render_template, request |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
model_path = "./finetuned_codegen" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32) |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
device = torch.device("cpu") |
|
model.to(device) |
|
|
|
@app.route("/", methods=["GET", "POST"]) |
|
def index(): |
|
generated_code = "" |
|
prompt = "" |
|
if request.method == "POST": |
|
prompt = request.form["prompt"] |
|
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device) |
|
outputs = model.generate( |
|
**inputs, |
|
max_length=200, |
|
num_return_sequences=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9 |
|
) |
|
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return render_template("index.html", generated_code=generated_code, prompt=prompt) |
|
|
|
if __name__ == "__main__": |
|
app.run(debug=True) |