Update all_in_one.py
Browse files- all_in_one.py +114 -114
all_in_one.py
CHANGED
@@ -1,115 +1,115 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
plt.
|
88 |
-
plt.
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
"Write a Python
|
101 |
-
]
|
102 |
-
|
103 |
-
for prompt in prompts:
|
104 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
105 |
-
outputs = model.generate(
|
106 |
-
**inputs,
|
107 |
-
max_length=200,
|
108 |
-
num_return_sequences=1,
|
109 |
-
pad_token_id=tokenizer.eos_token_id,
|
110 |
-
do_sample=True,
|
111 |
-
temperature=0.7,
|
112 |
-
top_p=0.9
|
113 |
-
)
|
114 |
-
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
115 |
print(f"Prompt: {prompt}\nGenerated Code:\n{generated_code}\n{'-'*50}")
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling, TrainerCallback
|
5 |
+
from datasets import Dataset
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Set Hugging Face token (replace with your actual token)
|
9 |
+
os.environ["HF_TOKEN"] = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" # Replace with your HF_TOKEN
|
10 |
+
|
11 |
+
# Download model and tokenizer
|
12 |
+
model_name = "Salesforce/codegen-350M-multi"
|
13 |
+
local_model_path = "./codegen_model"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=local_model_path)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, cache_dir=local_model_path)
|
16 |
+
|
17 |
+
# Set padding token
|
18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
19 |
+
|
20 |
+
# Move model to CPU
|
21 |
+
device = torch.device("cpu")
|
22 |
+
model.to(device)
|
23 |
+
|
24 |
+
# Load custom dataset from JSONL
|
25 |
+
dataset_path = "./custom_dataset.jsonl"
|
26 |
+
data = []
|
27 |
+
with open(dataset_path, 'r', encoding='utf-8') as f:
|
28 |
+
for line in f:
|
29 |
+
data.append(json.loads(line.strip()))
|
30 |
+
dataset = Dataset.from_list(data)
|
31 |
+
|
32 |
+
# Tokenize dataset
|
33 |
+
def tokenize_function(examples):
|
34 |
+
inputs = [f"{prompt}\n{code}" for prompt, code in zip(examples["prompt"], examples["code"])]
|
35 |
+
return tokenizer(inputs, truncation=True, padding="max_length", max_length=128)
|
36 |
+
|
37 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["prompt", "code"])
|
38 |
+
|
39 |
+
# Data collator for language modeling
|
40 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
41 |
+
|
42 |
+
# Define training arguments
|
43 |
+
training_args = TrainingArguments(
|
44 |
+
output_dir="./finetuned_codegen",
|
45 |
+
overwrite_output_dir=True,
|
46 |
+
num_train_epochs=3,
|
47 |
+
per_device_train_batch_size=1,
|
48 |
+
gradient_accumulation_steps=4,
|
49 |
+
save_steps=500,
|
50 |
+
save_total_limit=2,
|
51 |
+
logging_steps=100,
|
52 |
+
learning_rate=5e-5,
|
53 |
+
fp16=False,
|
54 |
+
no_cuda=True,
|
55 |
+
dataloader_pin_memory=False,
|
56 |
+
)
|
57 |
+
|
58 |
+
# Custom callback to store training loss
|
59 |
+
class LossCallback(TrainerCallback):
|
60 |
+
def __init__(self):
|
61 |
+
self.losses = []
|
62 |
+
|
63 |
+
def on_log(self, args, state, control, logs=None, **kwargs):
|
64 |
+
if logs and "loss" in logs:
|
65 |
+
self.losses.append(logs["loss"])
|
66 |
+
|
67 |
+
loss_callback = LossCallback()
|
68 |
+
|
69 |
+
# Initialize Trainer
|
70 |
+
trainer = Trainer(
|
71 |
+
model=model,
|
72 |
+
args=training_args,
|
73 |
+
train_dataset=tokenized_dataset,
|
74 |
+
data_collator=data_collator,
|
75 |
+
callbacks=[loss_callback],
|
76 |
+
)
|
77 |
+
|
78 |
+
# Start fine-tuning
|
79 |
+
print("Starting fine-tuning...")
|
80 |
+
trainer.train()
|
81 |
+
|
82 |
+
# Save fine-tuned model
|
83 |
+
model.save_pretrained("./finetuned_codegen")
|
84 |
+
tokenizer.save_pretrained("./finetuned_codegen")
|
85 |
+
|
86 |
+
# Plot training loss
|
87 |
+
plt.plot(loss_callback.losses, label="Training Loss")
|
88 |
+
plt.xlabel("Steps")
|
89 |
+
plt.ylabel("Loss")
|
90 |
+
plt.title("Fine-Tuning Loss Curve")
|
91 |
+
plt.legend()
|
92 |
+
plt.savefig("./finetuned_codegen/loss_plot.png")
|
93 |
+
plt.show()
|
94 |
+
|
95 |
+
print("Fine-tuning completed. Model saved to ./finetuned_codegen. Loss plot saved to ./finetuned_codegen/loss_plot.png")
|
96 |
+
|
97 |
+
# Test fine-tuned model
|
98 |
+
print("\nTesting fine-tuned model...")
|
99 |
+
prompts = [
|
100 |
+
"Write a Python program to print 'Hello, World!'"
|
101 |
+
]
|
102 |
+
|
103 |
+
for prompt in prompts:
|
104 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
105 |
+
outputs = model.generate(
|
106 |
+
**inputs,
|
107 |
+
max_length=200,
|
108 |
+
num_return_sequences=1,
|
109 |
+
pad_token_id=tokenizer.eos_token_id,
|
110 |
+
do_sample=True,
|
111 |
+
temperature=0.7,
|
112 |
+
top_p=0.9
|
113 |
+
)
|
114 |
+
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
115 |
print(f"Prompt: {prompt}\nGenerated Code:\n{generated_code}\n{'-'*50}")
|