from flask import Flask, render_template, request import torch from transformers import AutoTokenizer, AutoModelForCausalLM app = Flask(__name__) # Load fine-tuned model and tokenizer model_path = "./finetuned_codegen" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16) # Set padding token tokenizer.pad_token = tokenizer.eos_token # Move model to CPU device = torch.device("cpu") model.to(device) @app.route("/", methods=["GET", "POST"]) def index(): generated_code = "" prompt = "" if request.method == "POST": prompt = request.form["prompt"] inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device) outputs = model.generate( **inputs, max_length=200, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.7, top_p=0.9 ) generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return render_template("index.html", generated_code=generated_code, prompt=prompt) if __name__ == "__main__": app.run(debug=True)