File size: 1,551 Bytes
acee6ee
6d594da
 
 
 
acee6ee
a461a35
 
 
 
 
 
acee6ee
 
e2592aa
acee6ee
c950b8d
acee6ee
 
88fac11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344961
88fac11
 
 
 
a461a35
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model:
- microsoft/Florence-2-base-ft
datasets:
- salma-remyx/PoseText
library_name: transformers
tags:
- remyx
- PoseEstimation
- TextGeneration
- MultiModal
- VLM
---

# Model Card for PoseFlorence-2

This model fine-tunes Florence-2-base-ft in the POSE task for body keypoint estimation using the PoseText Dataset.


# Running PoseFlorence-2
```python
import requests

import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM 


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model = AutoModelForCausalLM.from_pretrained("remyxai/PoseeFlorence-2", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("remyxai/PoseFlorence-2", trust_remote_code=True)

prompt = "<POSE>"

url = "https://remyx.ai/assets/spatialvlm/warehouse_rgb.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)

generated_ids = model.generate(
    input_ids=inputs["input_ids"],
    pixel_values=inputs["pixel_values"],
    max_new_tokens=1024,
    num_beams=3,
    do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))

print(parsed_answer)
```

- **Developed by:** [remyx.ai]
- **Finetuned from model:** [microsoft/Florence-2-base-ft]