File size: 1,551 Bytes
acee6ee 6d594da acee6ee a461a35 acee6ee e2592aa acee6ee c950b8d acee6ee 88fac11 6344961 88fac11 a461a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model:
- microsoft/Florence-2-base-ft
datasets:
- salma-remyx/PoseText
library_name: transformers
tags:
- remyx
- PoseEstimation
- TextGeneration
- MultiModal
- VLM
---
# Model Card for PoseFlorence-2
This model fine-tunes Florence-2-base-ft in the POSE task for body keypoint estimation using the PoseText Dataset.
# Running PoseFlorence-2
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained("remyxai/PoseeFlorence-2", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("remyxai/PoseFlorence-2", trust_remote_code=True)
prompt = "<POSE>"
url = "https://remyx.ai/assets/spatialvlm/warehouse_rgb.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
print(parsed_answer)
```
- **Developed by:** [remyx.ai]
- **Finetuned from model:** [microsoft/Florence-2-base-ft]
|