File size: 3,192 Bytes
20d7251 dbc541d 20d7251 94bb57a 20d7251 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
library_name: transformers
license: llama3
datasets:
- remyxai/mantis-spacellava
tags:
- remyx
- interleaved
- multi-image
base_model:
- TIGER-Lab/Mantis-8B-siglip-llama3
---

# Model Card for SpaceMantis
**SpaceMantis** fine-tunes [Mantis-8B-siglip-llama3](TIGER-Lab/Mantis-8B-siglip-llama3) for enhanced spatial reasoning.
## Model Details
Uses LoRA fine-tune on the [spacellava dataset](https://huggingface.co/datasets/remyxai/vqasynth_spacellava) designed with [VQASynth](https://github.com/remyxai/VQASynth/tree/main) to enhance spatial reasoning as in [SpatialVLM](https://spatial-vlm.github.io/).
### Model Description
This model uses data synthesis techniques and publically available models to reproduce the work described in SpatialVLM to enhance the spatial reasoning of multimodal models.
With a pipeline of expert models, we can infer spatial relationships between objects in a scene to create VQA dataset for spatial reasoning.
- **Developed by:** remyx.ai
- **Model type:** MultiModal Model, Vision Language Model, Llama 3
## Quick Start
To run SpaceMantis, follow these steps:
```python
import torch
from PIL import Image
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava
# Load the model and processor
attn_implementation = None # or "flash_attention_2"
processor = MLlavaProcessor.from_pretrained("remyxai/SpaceMantis")
model = LlavaForConditionalGeneration.from_pretrained("remyxai/SpaceMantis", device_map="cuda", torch_dtype=torch.float16, attn_implementation=attn_implementation)
generation_kwargs = {
"max_new_tokens": 1024,
"num_beams": 1,
"do_sample": False
}
# Function to run inference
def run_inference(image_path, content):
# Load the image
image = Image.open(image_path).convert("RGB")
# Convert the image to base64
images = [image]
# Run the inference
response, history = chat_mllava(content, images, model, processor, **generation_kwargs)
return response
# Example usage
image_path = "path/to/your/image.jpg"
content = "Your question here."
response = run_inference(image_path, content)
print("Response:", response)
```
### Model Sources
- **Dataset:** [SpaceLLaVA](https://huggingface.co/datasets/remyxai/vqasynth_spacellava)
- **Repository:** [VQASynth](https://github.com/remyxai/VQASynth/tree/main)
- **Paper:** [SpatialVLM](https://arxiv.org/abs/2401.12168)
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
@article{jiang2024mantis,
title={MANTIS: Interleaved Multi-Image Instruction Tuning},
author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
journal={arXiv preprint arXiv:2405.01483},
year={2024}
}
``` |