renatostrianese
commited on
Commit
·
3e9de82
1
Parent(s):
e63eb46
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v3.zip +2 -2
- a2c-PandaReachDense-v3/data +10 -16
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -0.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.24 +/- 0.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0bd9a110e169b5f6a5a0e7a0129b0c90248b0d40bf1f8b0fdace1226a6380d6
|
3 |
+
size 105243
|
a2c-PandaReachDense-v3/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -27,13 +27,7 @@
|
|
27 |
"start_time": 1691678856713129659,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
-
"_last_obs":
|
31 |
-
":type:": "<class 'collections.OrderedDict'>",
|
32 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhRK8P3Utn79HD1G/Q/O1P9ROBj8mDOO/M+GLP9DbAUBXnBU/KhEuP2pD176+tJ09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAefuuPyjptb+lJBK/jrnLP2y3jT1M8YW9T1+jP12EuD/EL50/P4PsPrlrpb9GCNG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFErw/dS2fv0cPUb+TZM894qJZv2ESzb9D87U/1E4GPyYM47/TaaA+pSuuv2emYr8z4Ys/0NsBQFecFT/Qw40/8x1OP/1LQD0qES4/akPXvr60nT3kk1A+lJrMv9i9wb+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
-
"achieved_goal": "[[ 1.4693152 -1.2435747 -0.81663936]\n [ 1.4214863 0.5246403 -1.7738082 ]\n [ 1.09281 2.0290413 0.5844168 ]\n [ 0.6799494 -0.4204362 0.07700489]]",
|
34 |
-
"desired_goal": "[[ 1.3670493 -1.4211779 -0.57087165]\n [ 1.5916002 0.06919751 -0.06540164]\n [ 1.2763461 1.4415394 1.2280202 ]\n [ 0.46193883 -1.2923499 -0.40826625]]",
|
35 |
-
"observation": "[[ 1.4693152 -1.2435747 -0.81663936 0.10126605 -0.85014164 -1.6021234 ]\n [ 1.4214863 0.5246403 -1.7738082 0.31330737 -1.3607069 -0.8853516 ]\n [ 1.09281 2.0290413 0.5844168 1.1075382 0.8051445 0.04694747]\n [ 0.6799494 -0.4204362 0.07700489 0.20368916 -1.5984674 -1.5136061 ]]"
|
36 |
-
},
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
@@ -59,13 +53,6 @@
|
|
59 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
},
|
61 |
"_n_updates": 50000,
|
62 |
-
"n_steps": 5,
|
63 |
-
"gamma": 0.99,
|
64 |
-
"gae_lambda": 1.0,
|
65 |
-
"ent_coef": 0.0,
|
66 |
-
"vf_coef": 0.5,
|
67 |
-
"max_grad_norm": 0.5,
|
68 |
-
"normalize_advantage": false,
|
69 |
"observation_space": {
|
70 |
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
@@ -90,6 +77,13 @@
|
|
90 |
"_np_random": null
|
91 |
},
|
92 |
"n_envs": 4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
"lr_schedule": {
|
94 |
":type:": "<class 'function'>",
|
95 |
":serialized:": "gAWVBwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGsvaG9tZS9yZW5hdG9zdHJpYW5lc2UvYW5hY29uZGEzL2VudnMvUmVuYXRvVEYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL3JlbmF0b3N0cmlhbmVzZS9hbmFjb25kYTMvZW52cy9SZW5hdG9URi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f877c4f7280>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f877c4f5f00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
27 |
"start_time": 1691678856713129659,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
+
"_last_obs": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"_last_episode_starts": {
|
32 |
":type:": "<class 'numpy.ndarray'>",
|
33 |
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
|
|
53 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
54 |
},
|
55 |
"_n_updates": 50000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
"observation_space": {
|
57 |
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
58 |
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 4,
|
80 |
+
"n_steps": 5,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 1.0,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"normalize_advantage": false,
|
87 |
"lr_schedule": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVBwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGsvaG9tZS9yZW5hdG9zdHJpYW5lc2UvYW5hY29uZGEzL2VudnMvUmVuYXRvVEYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL3JlbmF0b3N0cmlhbmVzZS9hbmFjb25kYTMvZW52cy9SZW5hdG9URi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f49fb773280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49fb7728c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691678856713129659, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhRK8P3Utn79HD1G/Q/O1P9ROBj8mDOO/M+GLP9DbAUBXnBU/KhEuP2pD176+tJ09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAefuuPyjptb+lJBK/jrnLP2y3jT1M8YW9T1+jP12EuD/EL50/P4PsPrlrpb9GCNG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFErw/dS2fv0cPUb+TZM894qJZv2ESzb9D87U/1E4GPyYM47/TaaA+pSuuv2emYr8z4Ys/0NsBQFecFT/Qw40/8x1OP/1LQD0qES4/akPXvr60nT3kk1A+lJrMv9i9wb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.4693152 -1.2435747 -0.81663936]\n [ 1.4214863 0.5246403 -1.7738082 ]\n [ 1.09281 2.0290413 0.5844168 ]\n [ 0.6799494 -0.4204362 0.07700489]]", "desired_goal": "[[ 1.3670493 -1.4211779 -0.57087165]\n [ 1.5916002 0.06919751 -0.06540164]\n [ 1.2763461 1.4415394 1.2280202 ]\n [ 0.46193883 -1.2923499 -0.40826625]]", "observation": "[[ 1.4693152 -1.2435747 -0.81663936 0.10126605 -0.85014164 -1.6021234 ]\n [ 1.4214863 0.5246403 -1.7738082 0.31330737 -1.3607069 -0.8853516 ]\n [ 1.09281 2.0290413 0.5844168 1.1075382 0.8051445 0.04694747]\n [ 0.6799494 -0.4204362 0.07700489 0.20368916 -1.5984674 -1.5136061 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqWyhvYahCLyHXrY9xbPru1uNBj6+5eQ9UORPPRRpVD04HW492Z8ZPRmc5L0YeHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07882053 -0.00833929 0.08904748]\n [-0.00719306 0.1313986 0.11176632]\n [ 0.05075485 0.05185802 0.05813333]\n [ 0.03750596 -0.11162586 0.24264562]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+IRAbADaKMAWyUSwSMAXSUR0Cc+WmOEM9bdX2UKGgGR7/L+kxh2GIsaAdLA2gIR0Cc+fHPNVzZdX2UKGgGR7/R4N7SiM5waAdLA2gIR0Cc+PMA3kxRdX2UKGgGR7+WUW2w3YL9aAdLAWgIR0Cc+fi/wiJPdX2UKGgGR7+ob0e2d/ayaAdLAWgIR0Cc+PmUnogWdX2UKGgGR7/M4GUwBYFJaAdLA2gIR0Cc+IDrZ8KHdX2UKGgGR7/ZkZ75VOsUaAdLBGgIR0Cc+YO45Lh8dX2UKGgGR7/OEnLJSzgNaAdLA2gIR0Cc+g5vtMPCdX2UKGgGR7/WDb8FY+0PaAdLA2gIR0Cc+JZ+x4Y8dX2UKGgGR7/ZJFLFn7HiaAdLBWgIR0Cc+RwxnFo+dX2UKGgGR7/MDA8B+4LDaAdLA2gIR0Cc+iGWD6FedX2UKGgGR7/XlBQemvW6aAdLBGgIR0Cc+aBQvYe1dX2UKGgGR7+l/nW8RL9NaAdLAWgIR0Cc+SK5TZQIdX2UKGgGR7+VDWsijcmCaAdLAWgIR0Cc+aaRISUUdX2UKGgGR7+6rq+rU9ZBaAdLAmgIR0Cc+TGmk30gdX2UKGgGR7/MEXcgyM1kaAdLA2gIR0Cc+jeDnNgSdX2UKGgGR7/F3V09yLhraAdLAmgIR0Cc+bZH/cWTdX2UKGgGR7+0K2KEWZZ0aAdLAmgIR0Cc+T71qWTpdX2UKGgGR7/cI/Z/Tb35aAdLB2gIR0Cc+MXrdFfBdX2UKGgGR7/ULP2PDHfeaAdLA2gIR0Cc+kpnHvMKdX2UKGgGR7/TwM6RyOrAaAdLBGgIR0Cc+dGdqcmTdX2UKGgGR7/P0e2d/axpaAdLA2gIR0Cc+VRYRujzdX2UKGgGR7/YQzUI9kjHaAdLBGgIR0Cc+OHKwIMSdX2UKGgGR7/THNorWiDeaAdLA2gIR0Cc+mFXJYDDdX2UKGgGR7/L/T9bX6InaAdLA2gIR0Cc+eb9ZRsNdX2UKGgGR7/Sxkd3jdYXaAdLA2gIR0Cc+WmPYFq0dX2UKGgGR7/TPKuB+WnkaAdLA2gIR0Cc+neFtbcHdX2UKGgGR7/eFVDKHO8kaAdLBGgIR0Cc+P9+gDigdX2UKGgGR7/WEq2BreqJaAdLA2gIR0Cc+f0Re1KHdX2UKGgGR7/In1nM+u/2aAdLA2gIR0Cc+X+2VmjCdX2UKGgGR7+6q2jO9nK5aAdLAmgIR0Cc+oVzp5eJdX2UKGgGR7+a6jFhoduHaAdLAWgIR0Cc+YbvgFX8dX2UKGgGR7/XKji4rjHXaAdLBGgIR0Cc+RlFtsN2dX2UKGgGR7/OXw9aEBbOaAdLA2gIR0Cc+prftQbddX2UKGgGR7/XIVuaWom5aAdLBGgIR0Cc+hnE2pAEdX2UKGgGR7/RjQiRnvlVaAdLA2gIR0Cc+ZyKNyYHdX2UKGgGR7/Cdf9gnc+JaAdLAmgIR0Cc+iblijL0dX2UKGgGR7/SFGXokiUxaAdLA2gIR0Cc+TAuZkTYdX2UKGgGR7/GSElE7W/baAdLA2gIR0Cc+a+yquKXdX2UKGgGR7/diGWUr08OaAdLBGgIR0Cc+rUQ04zadX2UKGgGR7/DDjzZpSJkaAdLAmgIR0Cc+TyRSxZ/dX2UKGgGR7/QA9FF2FFlaAdLA2gIR0Cc+jzQ/oq1dX2UKGgGR7+wa2nbZezEaAdLAmgIR0Cc+sUWl/H6dX2UKGgGR7/MIqLCN0eVaAdLA2gIR0Cc+cYwZflZdX2UKGgGR7+oztTkyULVaAdLAWgIR0Cc+cyrxRVIdX2UKGgGR7/FLvCuU2UCaAdLA2gIR0Cc+VOKfnOjdX2UKGgGR7/SL2HtWuHOaAdLA2gIR0Cc+lDDjzZpdX2UKGgGR7/XKdQO4G2UaAdLBGgIR0Cc+uCyQgcMdX2UKGgGR7/BhgmZ3LV4aAdLAmgIR0Cc+l+TeO4odX2UKGgGR7/TXbuc+aBqaAdLA2gIR0Cc+WlIVdondX2UKGgGR7/Xfr8iwB5paAdLBGgIR0Cc+ek5IYm+dX2UKGgGR7/T+8XenAIqaAdLA2gIR0Cc+vRkEs8QdX2UKGgGR7/WrWAf+0gKaAdLA2gIR0Cc+nMQVbiZdX2UKGgGR7/R863iJfpmaAdLA2gIR0Cc+ftGus90dX2UKGgGR7/VonrpqynlaAdLA2gIR0Cc+wnvDxb0dX2UKGgGR7/OGQjlgc94aAdLA2gIR0Cc+ojEehf0dX2UKGgGR7/P8JD3M6ikaAdLA2gIR0Cc+hFYMfA9dX2UKGgGR7/fqH446wMZaAdLB2gIR0Cc+ZhScbzcdX2UKGgGR7/MkDZDiOvMaAdLA2gIR0Cc+xzTF2mpdX2UKGgGR7/aj0L+glF+aAdLBGgIR0Cc+qSWqtHQdX2UKGgGR7/Ilt0mtyPuaAdLA2gIR0Cc+idat9x7dX2UKGgGR7/QYnOSntOVaAdLA2gIR0Cc+a5/b0vodX2UKGgGR7+jzK9wm3OOaAdLAWgIR0Cc+bUzKs+3dX2UKGgGR7/GpXIU8FINaAdLA2gIR0Cc+zP7N0NjdX2UKGgGR7+/pIMBp5/taAdLAmgIR0Cc+jTQE6kqdX2UKGgGR7+3w7T2FnIyaAdLAmgIR0Cc+z/sE7nxdX2UKGgGR7/ZeLNwBHTaaAdLBGgIR0Cc+r5zHS4OdX2UKGgGR7+9/H5rP+n7aAdLAmgIR0Cc+kDfWMCLdX2UKGgGR7/Hh6Skj5bhaAdLA2gIR0Cc+cfbKzRhdX2UKGgGR7+lRm9QGfPHaAdLAWgIR0Cc+dEAHVwxdX2UKGgGR7/OtqYZ2pyZaAdLA2gIR0Cc+lccENe/dX2UKGgGR7+6/WUbDMvAaAdLAmgIR0Cc+d4h2W6cdX2UKGgGR7/Ub0OEug6EaAdLBGgIR0Cc+ts67ulXdX2UKGgGR7/WyPuG9HtnaAdLBWgIR0Cc+2Lw4KhMdX2UKGgGR7/L9v0h/y5JaAdLA2gIR0Cc+my/bj95dX2UKGgGR7+3nHNorWiDaAdLAmgIR0Cc+3Kcd5prdX2UKGgGR7/Vsrd30PH1aAdLBGgIR0Cc+fppN9H+dX2UKGgGR7/VrjYI0IkaaAdLBGgIR0Cc+vejEehgdX2UKGgGR7/dubI91U2laAdLBGgIR0Cc+oY0l7dBdX2UKGgGR7/FaIN3GGVSaAdLA2gIR0Cc+g0lJHy3dX2UKGgGR7/baL4vexfOaAdLBGgIR0Cc+47CiyprdX2UKGgGR7/SCuloDgZTaAdLA2gIR0Cc+w19ORDDdX2UKGgGR7+8ny/bj94vaAdLAmgIR0Cc+h1Muez2dX2UKGgGR7/AZw4sEq2CaAdLAmgIR0Cc+xqbjLjhdX2UKGgGR7/PBNVR1oxpaAdLA2gIR0Cc+p0jTrmhdX2UKGgGR7/aZuQ6p5u7aAdLBGgIR0Cc+6g5zYEodX2UKGgGR7/UQmNR3u/laAdLA2gIR0Cc+i+vyLAIdX2UKGgGR7/Rttygf2boaAdLA2gIR0Cc+rIYWLxadX2UKGgGR7/cO/L1VYITaAdLBGgIR0Cc+zb3XZoPdX2UKGgGR7/AUmlZX+2maAdLAmgIR0Cc+kB6rvLHdX2UKGgGR7/RhWHUMG5daAdLA2gIR0Cc+79h7VridX2UKGgGR7+pd0JWvKU3aAdLAWgIR0Cc+kbNKRMfdX2UKGgGR7/JxpcophF3aAdLA2gIR0Cc+sYqoZQ6dX2UKGgGR7/WvTw2ETQFaAdLA2gIR0Cc+0n3L3bmdX2UKGgGR7/EfPomois5aAdLAmgIR0Cc+lMkhRqHdX2UKGgGR7/QZuhsZYPoaAdLA2gIR0Cc+9TER8MNdX2UKGgGR7/EiqyWzF/AaAdLAmgIR0Cc+1n27FsIdX2UKGgGR7/UFB6a9bosaAdLA2gIR0Cc+tyhzvJBdX2UKGgGR7+8Oskpqh11aAdLAmgIR0Cc++JaaCtjdX2UKGgGR7/PpGFzuF6BaAdLBGgIR0Cc+m+Q2dd3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVBwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGsvaG9tZS9yZW5hdG9zdHJpYW5lc2UvYW5hY29uZGEzL2VudnMvUmVuYXRvVEYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL3JlbmF0b3N0cmlhbmVzZS9hbmFjb25kYTMvZW52cy9SZW5hdG9URi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.2.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2", "Python": "3.9.17", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f877c4f7280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f877c4f5f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691678856713129659, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqWyhvYahCLyHXrY9xbPru1uNBj6+5eQ9UORPPRRpVD04HW492Z8ZPRmc5L0YeHg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07882053 -0.00833929 0.08904748]\n [-0.00719306 0.1313986 0.11176632]\n [ 0.05075485 0.05185802 0.05813333]\n [ 0.03750596 -0.11162586 0.24264562]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9+IRAbADaKMAWyUSwSMAXSUR0Cc+WmOEM9bdX2UKGgGR7/L+kxh2GIsaAdLA2gIR0Cc+fHPNVzZdX2UKGgGR7/R4N7SiM5waAdLA2gIR0Cc+PMA3kxRdX2UKGgGR7+WUW2w3YL9aAdLAWgIR0Cc+fi/wiJPdX2UKGgGR7+ob0e2d/ayaAdLAWgIR0Cc+PmUnogWdX2UKGgGR7/M4GUwBYFJaAdLA2gIR0Cc+IDrZ8KHdX2UKGgGR7/ZkZ75VOsUaAdLBGgIR0Cc+YO45Lh8dX2UKGgGR7/OEnLJSzgNaAdLA2gIR0Cc+g5vtMPCdX2UKGgGR7/WDb8FY+0PaAdLA2gIR0Cc+JZ+x4Y8dX2UKGgGR7/ZJFLFn7HiaAdLBWgIR0Cc+RwxnFo+dX2UKGgGR7/MDA8B+4LDaAdLA2gIR0Cc+iGWD6FedX2UKGgGR7/XlBQemvW6aAdLBGgIR0Cc+aBQvYe1dX2UKGgGR7+l/nW8RL9NaAdLAWgIR0Cc+SK5TZQIdX2UKGgGR7+VDWsijcmCaAdLAWgIR0Cc+aaRISUUdX2UKGgGR7+6rq+rU9ZBaAdLAmgIR0Cc+TGmk30gdX2UKGgGR7/MEXcgyM1kaAdLA2gIR0Cc+jeDnNgSdX2UKGgGR7/F3V09yLhraAdLAmgIR0Cc+bZH/cWTdX2UKGgGR7+0K2KEWZZ0aAdLAmgIR0Cc+T71qWTpdX2UKGgGR7/cI/Z/Tb35aAdLB2gIR0Cc+MXrdFfBdX2UKGgGR7/ULP2PDHfeaAdLA2gIR0Cc+kpnHvMKdX2UKGgGR7/TwM6RyOrAaAdLBGgIR0Cc+dGdqcmTdX2UKGgGR7/P0e2d/axpaAdLA2gIR0Cc+VRYRujzdX2UKGgGR7/YQzUI9kjHaAdLBGgIR0Cc+OHKwIMSdX2UKGgGR7/THNorWiDeaAdLA2gIR0Cc+mFXJYDDdX2UKGgGR7/L/T9bX6InaAdLA2gIR0Cc+eb9ZRsNdX2UKGgGR7/Sxkd3jdYXaAdLA2gIR0Cc+WmPYFq0dX2UKGgGR7/TPKuB+WnkaAdLA2gIR0Cc+neFtbcHdX2UKGgGR7/eFVDKHO8kaAdLBGgIR0Cc+P9+gDigdX2UKGgGR7/WEq2BreqJaAdLA2gIR0Cc+f0Re1KHdX2UKGgGR7/In1nM+u/2aAdLA2gIR0Cc+X+2VmjCdX2UKGgGR7+6q2jO9nK5aAdLAmgIR0Cc+oVzp5eJdX2UKGgGR7+a6jFhoduHaAdLAWgIR0Cc+YbvgFX8dX2UKGgGR7/XKji4rjHXaAdLBGgIR0Cc+RlFtsN2dX2UKGgGR7/OXw9aEBbOaAdLA2gIR0Cc+prftQbddX2UKGgGR7/XIVuaWom5aAdLBGgIR0Cc+hnE2pAEdX2UKGgGR7/RjQiRnvlVaAdLA2gIR0Cc+ZyKNyYHdX2UKGgGR7/Cdf9gnc+JaAdLAmgIR0Cc+iblijL0dX2UKGgGR7/SFGXokiUxaAdLA2gIR0Cc+TAuZkTYdX2UKGgGR7/GSElE7W/baAdLA2gIR0Cc+a+yquKXdX2UKGgGR7/diGWUr08OaAdLBGgIR0Cc+rUQ04zadX2UKGgGR7/DDjzZpSJkaAdLAmgIR0Cc+TyRSxZ/dX2UKGgGR7/QA9FF2FFlaAdLA2gIR0Cc+jzQ/oq1dX2UKGgGR7+wa2nbZezEaAdLAmgIR0Cc+sUWl/H6dX2UKGgGR7/MIqLCN0eVaAdLA2gIR0Cc+cYwZflZdX2UKGgGR7+oztTkyULVaAdLAWgIR0Cc+cyrxRVIdX2UKGgGR7/FLvCuU2UCaAdLA2gIR0Cc+VOKfnOjdX2UKGgGR7/SL2HtWuHOaAdLA2gIR0Cc+lDDjzZpdX2UKGgGR7/XKdQO4G2UaAdLBGgIR0Cc+uCyQgcMdX2UKGgGR7/BhgmZ3LV4aAdLAmgIR0Cc+l+TeO4odX2UKGgGR7/TXbuc+aBqaAdLA2gIR0Cc+WlIVdondX2UKGgGR7/Xfr8iwB5paAdLBGgIR0Cc+ek5IYm+dX2UKGgGR7/T+8XenAIqaAdLA2gIR0Cc+vRkEs8QdX2UKGgGR7/WrWAf+0gKaAdLA2gIR0Cc+nMQVbiZdX2UKGgGR7/R863iJfpmaAdLA2gIR0Cc+ftGus90dX2UKGgGR7/VonrpqynlaAdLA2gIR0Cc+wnvDxb0dX2UKGgGR7/OGQjlgc94aAdLA2gIR0Cc+ojEehf0dX2UKGgGR7/P8JD3M6ikaAdLA2gIR0Cc+hFYMfA9dX2UKGgGR7/fqH446wMZaAdLB2gIR0Cc+ZhScbzcdX2UKGgGR7/MkDZDiOvMaAdLA2gIR0Cc+xzTF2mpdX2UKGgGR7/aj0L+glF+aAdLBGgIR0Cc+qSWqtHQdX2UKGgGR7/Ilt0mtyPuaAdLA2gIR0Cc+idat9x7dX2UKGgGR7/QYnOSntOVaAdLA2gIR0Cc+a5/b0vodX2UKGgGR7+jzK9wm3OOaAdLAWgIR0Cc+bUzKs+3dX2UKGgGR7/GpXIU8FINaAdLA2gIR0Cc+zP7N0NjdX2UKGgGR7+/pIMBp5/taAdLAmgIR0Cc+jTQE6kqdX2UKGgGR7+3w7T2FnIyaAdLAmgIR0Cc+z/sE7nxdX2UKGgGR7/ZeLNwBHTaaAdLBGgIR0Cc+r5zHS4OdX2UKGgGR7+9/H5rP+n7aAdLAmgIR0Cc+kDfWMCLdX2UKGgGR7/Hh6Skj5bhaAdLA2gIR0Cc+cfbKzRhdX2UKGgGR7+lRm9QGfPHaAdLAWgIR0Cc+dEAHVwxdX2UKGgGR7/OtqYZ2pyZaAdLA2gIR0Cc+lccENe/dX2UKGgGR7+6/WUbDMvAaAdLAmgIR0Cc+d4h2W6cdX2UKGgGR7/Ub0OEug6EaAdLBGgIR0Cc+ts67ulXdX2UKGgGR7/WyPuG9HtnaAdLBWgIR0Cc+2Lw4KhMdX2UKGgGR7/L9v0h/y5JaAdLA2gIR0Cc+my/bj95dX2UKGgGR7+3nHNorWiDaAdLAmgIR0Cc+3Kcd5prdX2UKGgGR7/Vsrd30PH1aAdLBGgIR0Cc+fppN9H+dX2UKGgGR7/VrjYI0IkaaAdLBGgIR0Cc+vejEehgdX2UKGgGR7/dubI91U2laAdLBGgIR0Cc+oY0l7dBdX2UKGgGR7/FaIN3GGVSaAdLA2gIR0Cc+g0lJHy3dX2UKGgGR7/baL4vexfOaAdLBGgIR0Cc+47CiyprdX2UKGgGR7/SCuloDgZTaAdLA2gIR0Cc+w19ORDDdX2UKGgGR7+8ny/bj94vaAdLAmgIR0Cc+h1Muez2dX2UKGgGR7/AZw4sEq2CaAdLAmgIR0Cc+xqbjLjhdX2UKGgGR7/PBNVR1oxpaAdLA2gIR0Cc+p0jTrmhdX2UKGgGR7/aZuQ6p5u7aAdLBGgIR0Cc+6g5zYEodX2UKGgGR7/UQmNR3u/laAdLA2gIR0Cc+i+vyLAIdX2UKGgGR7/Rttygf2boaAdLA2gIR0Cc+rIYWLxadX2UKGgGR7/cO/L1VYITaAdLBGgIR0Cc+zb3XZoPdX2UKGgGR7/AUmlZX+2maAdLAmgIR0Cc+kB6rvLHdX2UKGgGR7/RhWHUMG5daAdLA2gIR0Cc+79h7VridX2UKGgGR7+pd0JWvKU3aAdLAWgIR0Cc+kbNKRMfdX2UKGgGR7/JxpcophF3aAdLA2gIR0Cc+sYqoZQ6dX2UKGgGR7/WvTw2ETQFaAdLA2gIR0Cc+0n3L3bmdX2UKGgGR7/EfPomois5aAdLAmgIR0Cc+lMkhRqHdX2UKGgGR7/QZuhsZYPoaAdLA2gIR0Cc+9TER8MNdX2UKGgGR7/EiqyWzF/AaAdLAmgIR0Cc+1n27FsIdX2UKGgGR7/UFB6a9bosaAdLA2gIR0Cc+tyhzvJBdX2UKGgGR7+8Oskpqh11aAdLAmgIR0Cc++JaaCtjdX2UKGgGR7/PpGFzuF6BaAdLBGgIR0Cc+m+Q2dd3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVBwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGsvaG9tZS9yZW5hdG9zdHJpYW5lc2UvYW5hY29uZGEzL2VudnMvUmVuYXRvVEYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL3JlbmF0b3N0cmlhbmVzZS9hbmFjb25kYTMvZW52cy9SZW5hdG9URi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.2.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2", "Python": "3.9.17", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "1.6.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -0.
|
|
|
1 |
+
{"mean_reward": -0.23649925962090493, "std_reward": 0.1252124539559484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-10T10:08:36.928102"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2553
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e6b91a14547b90e59adbba535af1e10866887cabec1845e468328def14a17e0
|
3 |
size 2553
|