renee127 commited on
Commit
a75ac8f
·
1 Parent(s): cad5dc9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 259.80 +/- 18.08
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.28 +/- 14.14
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa94ff2a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa94ff2a790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa94ff2a820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa94ff2a8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fa94ff2a940>", "forward": "<function ActorCriticPolicy.forward at 0x7fa94ff2a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa94ff2aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa94ff2aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa94ff2ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa94ff2ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa94ff2aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa94ff249c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671562184587553872, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpBFb6UVRg/yRnCPXzcWr7X1V68hq3jPAAAAAAAAAAAAAGkPeT6sj4CoSW+1FZUvt9hFbwBS8Q8AAAAAAAAAADaZRY+jJr4PmJzML4hhbm+LndZO2okFL0AAAAAAAAAAM05vzz8Kp0/xR0IPt6E1L4tx789tcVOPQAAAAAAAAAAExUVPkTKKz8QSui8c3e1vqvexz1/a6s8AAAAAAAAAADNTMi9KdgduiskljfR72oy4EAWunKkqrYAAIA/AAAAADMBLrxSh6q7yW8ouzKMiDtQKBI9rvaGvAAAgD8AAIA/Wvuxvfb8NrqiP5W1KueLtItwy7oTl1w0AACAPwAAAABzWU6+QphUPrSyGT75lBK+wmV9vN0TzDsAAAAAAAAAAHM8mb2OiqU/1lfYvjQiz76bLZC9oAoUvgAAAAAAAAAATacfvo7Sqj+aFSm/R1DQvotxJr6qZGa+AAAAAAAAAADa1Rc+/8SRP8Q8Gj9gvOO+Pz/+Pfjpaj4AAAAAAAAAALMoWT16wKE/nF2yPsrw2b5iaKU9au5ePgAAAAAAAAAAXRFRvi3bKj5uSvU96ZUwvrbueLxR9j69AAAAAAAAAABmMje94RSOuixcxzIZQNywxgpBOyxHGbMAAIA/AACAPxrXej4CgDE/Y7h0vraJnL5FTnE92DOGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxkcJW9zcUCUhpRSlIwBbJRNHQGMAXSUR0CT2sW912aEdX2UKGgGaAloD0MILZRMTu2xb0CUhpRSlGgVTWkBaBZHQJPbrqRlpXZ1fZQoaAZoCWgPQwgTRx6I7N5xQJSGlFKUaBVNlAFoFkdAk9uuxfOUuHV9lChoBmgJaA9DCKjF4GFa3G5AlIaUUpRoFU0sAWgWR0CT27kK/mDEdX2UKGgGaAloD0MIIhtIFxt2bkCUhpRSlGgVTRQBaBZHQJPb1PnB+F11fZQoaAZoCWgPQwjhRV9BGk9vQJSGlFKUaBVNdAFoFkdAk91+bNKRMnV9lChoBmgJaA9DCNid7jxx9nBAlIaUUpRoFU0hAWgWR0CT3Y0WM0gsdX2UKGgGaAloD0MIxXb3AF14bkCUhpRSlGgVTT4BaBZHQJPd+yjYZl51fZQoaAZoCWgPQwj+J3/3jlpAQJSGlFKUaBVNAgFoFkdAk+CDXFtKqXV9lChoBmgJaA9DCFddh2pKNW1AlIaUUpRoFU0PAWgWR0CT4TgKWszVdX2UKGgGaAloD0MI5rFmZBAPbECUhpRSlGgVTR0BaBZHQJPijgYP5Hp1fZQoaAZoCWgPQwjtfaoKDYw9QJSGlFKUaBVL4WgWR0CT4ucxTKkmdX2UKGgGaAloD0MI72/QXn1TcECUhpRSlGgVTTkBaBZHQJPjgzvZyuJ1fZQoaAZoCWgPQwhJaMu5VE9zQJSGlFKUaBVNEAFoFkdAk+OoKQaJh3V9lChoBmgJaA9DCHrjpDDvSG1AlIaUUpRoFU1eAWgWR0CT5HGTs6aLdX2UKGgGaAloD0MIIQa69gXtb0CUhpRSlGgVTToBaBZHQJPk7Ho5ggJ1fZQoaAZoCWgPQwjuJvimKZJwQJSGlFKUaBVNGgFoFkdAk+T3jU/fO3V9lChoBmgJaA9DCMaGbvaHYHNAlIaUUpRoFU1CAWgWR0CT5mb8m8dxdX2UKGgGaAloD0MI1SZO7vfsb0CUhpRSlGgVTUoBaBZHQJPmjx6OYIB1fZQoaAZoCWgPQwj5LxAESFhtQJSGlFKUaBVNGAFoFkdAk+cQnYxtYXV9lChoBmgJaA9DCCkiwypeTXBAlIaUUpRoFU0VAWgWR0CT53E+PikwdX2UKGgGaAloD0MIMh6lEt6VcECUhpRSlGgVTSoBaBZHQJPnj8aXKKZ1fZQoaAZoCWgPQwiwx0RKc51xQJSGlFKUaBVNHwFoFkdAk+pNhJAdGXV9lChoBmgJaA9DCPw1WaNeqHFAlIaUUpRoFU0PAWgWR0CT66nPE87qdX2UKGgGaAloD0MIpMfvbbr5cUCUhpRSlGgVTQwBaBZHQJPr5cbBGhF1fZQoaAZoCWgPQwgXoG016+FwQJSGlFKUaBVNfANoFkdAk+wfu5SWJXV9lChoBmgJaA9DCFbzHJGvrXJAlIaUUpRoFU1OAWgWR0CT7M655JK8dX2UKGgGaAloD0MI6DHKM+8acUCUhpRSlGgVTTIBaBZHQJPuJ/nW8RN1fZQoaAZoCWgPQwi9rIkF/iBxQJSGlFKUaBVNEwFoFkdAk+5XlfZ26nV9lChoBmgJaA9DCNFALJv5+3BAlIaUUpRoFU0kAWgWR0CT7nUb1h9cdX2UKGgGaAloD0MIjzaOWIv1bkCUhpRSlGgVTTIBaBZHQJPvfL1VYIV1fZQoaAZoCWgPQwiKsOHpFftvQJSGlFKUaBVNYgFoFkdAk++4bbUPQXV9lChoBmgJaA9DCLUWZqGdM3FAlIaUUpRoFU0KAWgWR0CT8FVVxS5zdX2UKGgGaAloD0MIXp7OFSUVcUCUhpRSlGgVTScBaBZHQJPwpNQCSzR1fZQoaAZoCWgPQwggQlw5u2ZxQJSGlFKUaBVNLAFoFkdAk/Dt70Fr23V9lChoBmgJaA9DCEPHDirxq3JAlIaUUpRoFU2oAmgWR0CT8aTqSowVdX2UKGgGaAloD0MIl+Kqsu/gakCUhpRSlGgVTU0BaBZHQJPzIyylenh1fZQoaAZoCWgPQwhyFva0g/xxQJSGlFKUaBVNAQFoFkdAk/VFKK5083V9lChoBmgJaA9DCMNGWb/Zk3FAlIaUUpRoFU03AWgWR0CT9YKZlWfcdX2UKGgGaAloD0MIs12hD5YgbkCUhpRSlGgVTRYBaBZHQJP12U3XI2h1fZQoaAZoCWgPQwgo84++SZpwQJSGlFKUaBVNLAFoFkdAk/ZsVclgMXV9lChoBmgJaA9DCL+2fvpPwnFAlIaUUpRoFU08AWgWR0CT+A9VFQVLdX2UKGgGaAloD0MI/dtlv+6Hb0CUhpRSlGgVTRoBaBZHQJP4D1yvLYB1fZQoaAZoCWgPQwiBJVex+HtCQJSGlFKUaBVL0mgWR0CT+SLm6oVEdX2UKGgGaAloD0MI/DkF+dl8cUCUhpRSlGgVTTMBaBZHQJP5QpsoDxN1fZQoaAZoCWgPQwhxWBr4UQdyQJSGlFKUaBVNHwFoFkdAk/mRufmLcnV9lChoBmgJaA9DCEDa/wArUXBAlIaUUpRoFU0NAWgWR0CT+m1cMVk+dX2UKGgGaAloD0MIRS+jWK42cECUhpRSlGgVTUYBaBZHQJQOb1OCXhR1fZQoaAZoCWgPQwjFVzuK8xZwQJSGlFKUaBVNgQFoFkdAlA8jF6zE8HV9lChoBmgJaA9DCE4oRMAhr25AlIaUUpRoFU0FAWgWR0CUD6xsl9jPdX2UKGgGaAloD0MI7N/1mbNubECUhpRSlGgVTQABaBZHQJQSMSYgJTl1fZQoaAZoCWgPQwhK8fEJWXVxQJSGlFKUaBVNowFoFkdAlBLFw5vLo3V9lChoBmgJaA9DCBWQ9j8AN3FAlIaUUpRoFU0CAWgWR0CUEuvECNjtdX2UKGgGaAloD0MIgSOBBptZakCUhpRSlGgVTbMBaBZHQJQTBpUPxx11fZQoaAZoCWgPQwhX7C+7J0duQJSGlFKUaBVNLAFoFkdAlBNHpSrHVHV9lChoBmgJaA9DCDV5ymq6bG1AlIaUUpRoFU0wAWgWR0CUE5cLBsQ/dX2UKGgGaAloD0MI1PIDVzn5ckCUhpRSlGgVS/xoFkdAlBUS8SPEKnV9lChoBmgJaA9DCJ+rrdifIXFAlIaUUpRoFU0wAWgWR0CUFc2KEWZadX2UKGgGaAloD0MIRrJHqNlMcECUhpRSlGgVTQMBaBZHQJQWjz+WGAV1fZQoaAZoCWgPQwibcK/MG+tyQJSGlFKUaBVNLwFoFkdAlBc95UtI1HV9lChoBmgJaA9DCE4mbhWEiXBAlIaUUpRoFU0+AWgWR0CUF3Cqp97XdX2UKGgGaAloD0MIK/aX3ZNLbUCUhpRSlGgVTSMBaBZHQJQYWAwwj+t1fZQoaAZoCWgPQwi7tOGwNLVxQJSGlFKUaBVNFAFoFkdAlBkI5YHPeHV9lChoBmgJaA9DCMdkcf8R1m9AlIaUUpRoFU1oAWgWR0CUG5JhOP/8dX2UKGgGaAloD0MIQKIJFDHqbkCUhpRSlGgVTQkBaBZHQJQcxV81Gb11fZQoaAZoCWgPQwhblq/LsDdzQJSGlFKUaBVNHwFoFkdAlBzQgs9SuXV9lChoBmgJaA9DCHUBLzNsh3FAlIaUUpRoFU0pAWgWR0CUHQgbZOBUdX2UKGgGaAloD0MIRRK9jOKwcUCUhpRSlGgVTTgBaBZHQJQdEdYGMXJ1fZQoaAZoCWgPQwhhp1g1CIdfQJSGlFKUaBVN6ANoFkdAlB2wC0WuYHV9lChoBmgJaA9DCIy+gjTjcXFAlIaUUpRoFU0wAWgWR0CUHbkgfU4JdX2UKGgGaAloD0MIEjElkujDcUCUhpRSlGgVTToBaBZHQJQdx+SbH6x1fZQoaAZoCWgPQwjy0k1iUNtxQJSGlFKUaBVNJQJoFkdAlB5OCkGiYnV9lChoBmgJaA9DCCBdbFop63BAlIaUUpRoFU0sAWgWR0CUH0EEC/47dX2UKGgGaAloD0MIjgdb7PbYbECUhpRSlGgVTTYBaBZHQJQg749HMEB1fZQoaAZoCWgPQwjrkJvhxpNyQJSGlFKUaBVNDgFoFkdAlCFdQTEiuHV9lChoBmgJaA9DCKgY52/ChXBAlIaUUpRoFU1EAWgWR0CUIgHxBmf5dX2UKGgGaAloD0MIfjhIiLJWcUCUhpRSlGgVTUkBaBZHQJQiVFhG6PN1fZQoaAZoCWgPQwjRBfUts61yQJSGlFKUaBVNgwFoFkdAlCKnDej2z3V9lChoBmgJaA9DCBu7RPWWQ3FAlIaUUpRoFU0vAWgWR0CUIwHVPN3XdX2UKGgGaAloD0MIejiB6bS1bUCUhpRSlGgVS/5oFkdAlCS76UJOWXV9lChoBmgJaA9DCP1LUpniHG9AlIaUUpRoFU0uAWgWR0CUJRNgjQiSdX2UKGgGaAloD0MI9BlQb4YMcUCUhpRSlGgVTQABaBZHQJQljQ6ZH/d1fZQoaAZoCWgPQwhS7j7Hx9FwQJSGlFKUaBVNIQFoFkdAlCWeObRWtHV9lChoBmgJaA9DCIcW2c63N3BAlIaUUpRoFU0aAWgWR0CUJaZPEbYLdX2UKGgGaAloD0MI/5QqUbYWckCUhpRSlGgVTSQBaBZHQJQluuMdcSp1fZQoaAZoCWgPQwgjFcYWgqdyQJSGlFKUaBVNIwFoFkdAlCZvag261HV9lChoBmgJaA9DCHqmlxhLuHJAlIaUUpRoFU0kAWgWR0CUJnA7gbZOdX2UKGgGaAloD0MIa/RqgJJjcECUhpRSlGgVTR8BaBZHQJQn6otL+P11fZQoaAZoCWgPQwgjTFEuzY9xQJSGlFKUaBVNYgFoFkdAlCkLyH2ys3V9lChoBmgJaA9DCL37471qx3JAlIaUUpRoFU0nAWgWR0CUKopMpPRBdX2UKGgGaAloD0MIx5+obNhgbECUhpRSlGgVTRwBaBZHQJQq4lzEJjV1fZQoaAZoCWgPQwhlUkMbAHpwQJSGlFKUaBVNHAFoFkdAlCtQjyFwk3V9lChoBmgJaA9DCGrecYrOC3BAlIaUUpRoFU0jAWgWR0CUK/ZZ0SyudX2UKGgGaAloD0MIup9TkJ/FQUCUhpRSlGgVS9ZoFkdAlCwH6/IsAnV9lChoBmgJaA9DCMQmMnNBlXBAlIaUUpRoFU0yAWgWR0CULN6vJRwZdX2UKGgGaAloD0MIZ+22C41JcUCUhpRSlGgVTTsBaBZHQJQvIlnh86V1fZQoaAZoCWgPQwiPG343nbFyQJSGlFKUaBVNIgFoFkdAlC8u76Hj63V9lChoBmgJaA9DCPFmDd7XqG5AlIaUUpRoFU0BAWgWR0CULzCA+Y+jdX2UKGgGaAloD0MITIxl+mXAckCUhpRSlGgVTSIBaBZHQJQva0UoKD11fZQoaAZoCWgPQwgvTny1I9ltQJSGlFKUaBVNCQFoFkdAlC97ZSNwSHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f6fbbfd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f6fbbfdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f6fbbfe50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f6fbbfee0>", "_build": "<function ActorCriticPolicy._build at 0x7f9f6fbbff70>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f6fbc6040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f6fbc60d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f6fbc6160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f6fbc61f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f6fbc6280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f6fbc6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9f6fbc3150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671568341075858270, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAzRT05plM/KjInPExGxr75BbE8CiVtvAAAAAAAAAAAZp1ovoQVDj9LfrC8K5quvri+6L1v0K89AAAAAAAAAABA27g9TtCqPet3Yb4K6Aa+la0xvSV9irwAAAAAAAAAAPMaxT0fzBs+7aVPvlSBN76xGE68V8Y5OwAAAAAAAAAA+iU1PmX98j4y3NC9uzxqvnYJnTz+6Pi7AAAAAAAAAADA+7I9e+6Wut6KhbTsHkEwmBdduhKogjMAAAAAAACAPzpUQ77Ijp+8ckmFu+cP1LmlwQ4+ZWCvOgAAgD8AAIA/TQBSve0OnD9CGJ6+7Qn0vkS0n73D5x2+AAAAAAAAAABOuba+TmTwPmb8Wj7RS66+ouwbvZNHZT0AAAAAAAAAAGb+l7x64l8+QbEQPnM5Wb67vVs9hrsOPAAAAAAAAAAAU44+PqDEXz+jsmI+8zOsvpNMOD5Oa6E9AAAAAAAAAACz17U99jBpugBMVbvhzgM4YDMAOzJVAzoAAIA/AACAP+b3uD1cSwC6+sA0u3cLzbOEXp+68LpYOgAAgD8AAIA/gA6CPqGJzT5T7XG+vRtovoBvhLsrH0E9AAAAAAAAAABzI6y9Yxt8P2YheL2TedO+d/aIvd6cUbwAAAAAAAAAALOr6r15utA+EsyUPebkh75N0pg8E4H+PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuagWEcWCcECUhpRSlIwBbJRNHgGMAXSUR0CO+1BeokzHdX2UKGgGaAloD0MIo5V7gVlra0CUhpRSlGgVTR4BaBZHQI77dgH/tIF1fZQoaAZoCWgPQwhXXvI/eXBwQJSGlFKUaBVNNwFoFkdAjvy3lr/KhnV9lChoBmgJaA9DCDFe86rOs3BAlIaUUpRoFU1OAWgWR0CO/7YyO7xvdX2UKGgGaAloD0MIrtf0oGCacECUhpRSlGgVTSsBaBZHQI8AaAMDwH91fZQoaAZoCWgPQwidnQyOEoJwQJSGlFKUaBVNKgFoFkdAjybj9XLeRHV9lChoBmgJaA9DCP3YJD9iOHFAlIaUUpRoFU1+AWgWR0CPJ5WPtD2KdX2UKGgGaAloD0MIw2SqYJQgcECUhpRSlGgVS/9oFkdAjyoz2WY4Q3V9lChoBmgJaA9DCL7e/fFe82tAlIaUUpRoFU1hAWgWR0CPKkdXko4NdX2UKGgGaAloD0MIKVsk7cZCbUCUhpRSlGgVTS8BaBZHQI8qWjGkvbp1fZQoaAZoCWgPQwi+9WG90T5xQJSGlFKUaBVNIAFoFkdAjyt2eg+Ql3V9lChoBmgJaA9DCK5H4XoUkjpAlIaUUpRoFUvcaBZHQI8s9OwgTyt1fZQoaAZoCWgPQwiGdk6zQKNwQJSGlFKUaBVNegFoFkdAjyz9SuQp4XV9lChoBmgJaA9DCFD+7h01/i3AlIaUUpRoFUu/aBZHQI8tSCz1K5F1fZQoaAZoCWgPQwgkD0QWKctwQJSGlFKUaBVNnAFoFkdAjzNrXlKbrnV9lChoBmgJaA9DCP0yGCMSHXBAlIaUUpRoFU06AWgWR0CPNNjS5RTCdX2UKGgGaAloD0MINNqqJDIpcECUhpRSlGgVTTMBaBZHQI81uiQDFId1fZQoaAZoCWgPQwitbvWcdAtrQJSGlFKUaBVNfgFoFkdAjzX85jpcHHV9lChoBmgJaA9DCFA6kWAqrHFAlIaUUpRoFU0iAWgWR0CPOSCdSVGDdX2UKGgGaAloD0MIk/yIX3GlcECUhpRSlGgVTUwBaBZHQI86BNfw7T51fZQoaAZoCWgPQwjjUwCMZ0dxQJSGlFKUaBVNMQFoFkdAjzrPcBU70XV9lChoBmgJaA9DCAjKbfvekHFAlIaUUpRoFU0lAWgWR0CPPNBXS0BwdX2UKGgGaAloD0MIE30+ygj1cUCUhpRSlGgVS/1oFkdAjz289GI9DHV9lChoBmgJaA9DCCx96IJ6DXJAlIaUUpRoFU1eAWgWR0CPQKrCFbmmdX2UKGgGaAloD0MIm6xRD5EJc0CUhpRSlGgVTbsBaBZHQI9CVklNUOx1fZQoaAZoCWgPQwhxHHi1HNRwQJSGlFKUaBVNSwFoFkdAj0K4TbnHN3V9lChoBmgJaA9DCJje/lx023FAlIaUUpRoFU13AWgWR0CPQ++cpb2UdX2UKGgGaAloD0MIBb8NMd6tcECUhpRSlGgVTWABaBZHQI9EOii7Ci11fZQoaAZoCWgPQwjytPzAVZxcQJSGlFKUaBVN6ANoFkdAj0nj6N2ki3V9lChoBmgJaA9DCKoQj8RLwW9AlIaUUpRoFU0pAWgWR0CPSuPjn3cpdX2UKGgGaAloD0MIgXozan6vcUCUhpRSlGgVTUcBaBZHQI9NB+YtxuN1fZQoaAZoCWgPQwjTiJl9HvpwQJSGlFKUaBVNGwFoFkdAj03h/RVp9XV9lChoBmgJaA9DCDUqcLJNBHBAlIaUUpRoFU1dAWgWR0CPTf8/lhgFdX2UKGgGaAloD0MIVyHlJ9WKbECUhpRSlGgVTS8BaBZHQI9RWjXWe6J1fZQoaAZoCWgPQwgHXi13ZjlxQJSGlFKUaBVNMAFoFkdAj1TBVlwtKHV9lChoBmgJaA9DCOc24V4ZUG9AlIaUUpRoFU0eAWgWR0CPWT7tRekYdX2UKGgGaAloD0MIyvrNxHS0cECUhpRSlGgVTUABaBZHQI9Zqx7iQ1d1fZQoaAZoCWgPQwiPiZRm86hrQJSGlFKUaBVNGgFoFkdAj1q0x20Re3V9lChoBmgJaA9DCE+Q2O4eVXJAlIaUUpRoFU0sAmgWR0CPXP8Rcu8LdX2UKGgGaAloD0MIp5at9cWLcUCUhpRSlGgVTVoBaBZHQI9dvq/ub7V1fZQoaAZoCWgPQwi8PnPWJ8lvQJSGlFKUaBVNRgFoFkdAj1387IT4+XV9lChoBmgJaA9DCNBHGXGBEXJAlIaUUpRoFU0sAWgWR0CPYciSq2jPdX2UKGgGaAloD0MIIsK/CNo/cUCUhpRSlGgVTVIBaBZHQI9lyIgvDgt1fZQoaAZoCWgPQwjyYIvdvqFwQJSGlFKUaBVNTAFoFkdAj2eRbKRuCXV9lChoBmgJaA9DCCjzj75JsxFAlIaUUpRoFUvcaBZHQI9qtknTiKl1fZQoaAZoCWgPQwhrY+yEV25wQJSGlFKUaBVNgwJoFkdAj2ueYD1XeXV9lChoBmgJaA9DCJEqilfZ9G9AlIaUUpRoFU2aAWgWR0CPbqdaMaS+dX2UKGgGaAloD0MIArovZ/ascECUhpRSlGgVTW4BaBZHQI9uwJXyRSx1fZQoaAZoCWgPQwi77NedLlZxQJSGlFKUaBVNRwFoFkdAj28HvlU6xXV9lChoBmgJaA9DCNv66T+rC3FAlIaUUpRoFU0TAWgWR0CPb4Q4jrzHdX2UKGgGaAloD0MI41RrYZYgbkCUhpRSlGgVTTwBaBZHQI+ZGJSBK+V1fZQoaAZoCWgPQwjidf2C3W5iQJSGlFKUaBVN6ANoFkdAj5lIESuhbnV9lChoBmgJaA9DCLlvtU5ceXBAlIaUUpRoFU0/AWgWR0CPm1zYEnstdX2UKGgGaAloD0MI66pALUYkckCUhpRSlGgVTUMBaBZHQI+cNS88La51fZQoaAZoCWgPQwgogc05OA9xQJSGlFKUaBVNEQFoFkdAj5ygMlTm4nV9lChoBmgJaA9DCDwVcM9zP25AlIaUUpRoFU1UAWgWR0CPnW5uIhyKdX2UKGgGaAloD0MIGVWGcbdNcECUhpRSlGgVTTgCaBZHQI+fBW7voeR1fZQoaAZoCWgPQwjG3/YEiStAQJSGlFKUaBVL8mgWR0CPohyxRl6JdX2UKGgGaAloD0MImlshrMbqMUCUhpRSlGgVS9ZoFkdAj6McmrsByXV9lChoBmgJaA9DCBfTTPc6DXBAlIaUUpRoFU11AWgWR0CPprlFtsN2dX2UKGgGaAloD0MIMxe4PFYnbkCUhpRSlGgVTWcBaBZHQI+nN6cAiml1fZQoaAZoCWgPQwgKMZdU7elwQJSGlFKUaBVNLAFoFkdAj6pGPgeijHV9lChoBmgJaA9DCHyakxfZD3JAlIaUUpRoFU1vAWgWR0CPqtXPJJXhdX2UKGgGaAloD0MI+KkqNJBwbkCUhpRSlGgVTUwBaBZHQI+rxa/yoXN1fZQoaAZoCWgPQwhvD0JAvjBwQJSGlFKUaBVNCwFoFkdAj6v9Whh6SnV9lChoBmgJaA9DCLQc6KG2ZlBAlIaUUpRoFU0bAWgWR0CPrNyMkyDadX2UKGgGaAloD0MILoz0onY8bUCUhpRSlGgVTWQBaBZHQI+tZJRO1v51fZQoaAZoCWgPQwhcPSe9775iQJSGlFKUaBVN6ANoFkdAj62lW4mTknV9lChoBmgJaA9DCFn5ZTBGzE9AlIaUUpRoFUvtaBZHQI+vdgBtDUp1fZQoaAZoCWgPQwiFl+DUB7VtQJSGlFKUaBVNMQFoFkdAj7CkEcKgI3V9lChoBmgJaA9DCAYtJGC0PHJAlIaUUpRoFU0/AWgWR0CPsLj1f3N+dX2UKGgGaAloD0MIBvLs8i0tb0CUhpRSlGgVTT0BaBZHQI+yYJNTLnt1fZQoaAZoCWgPQwjfqYB7HthwQJSGlFKUaBVNCAFoFkdAj7PI6bONYXV9lChoBmgJaA9DCOhqK/aX8mxAlIaUUpRoFU2DAWgWR0CPtoU9pyp8dX2UKGgGaAloD0MII2WLpN3/cECUhpRSlGgVTTYBaBZHQI+4pa/yoXN1fZQoaAZoCWgPQwgIA8+9x/JwQJSGlFKUaBVNHQFoFkdAj7qemm+Cb3V9lChoBmgJaA9DCEa0HVN3PHBAlIaUUpRoFU0sAWgWR0CPwIKbayrxdX2UKGgGaAloD0MIlZ9U+3T6S0CUhpRSlGgVS+hoFkdAj8JtQCSzPnV9lChoBmgJaA9DCE9Y4gFlhnFAlIaUUpRoFU1qAWgWR0CPwzDxb0OFdX2UKGgGaAloD0MIBORLqCAFcECUhpRSlGgVTUYBaBZHQI/Er04BFNN1fZQoaAZoCWgPQwgZG7rZnwtwQJSGlFKUaBVNMgFoFkdAj8XhPCVKPHV9lChoBmgJaA9DCGItPgXAwnJAlIaUUpRoFU1FAWgWR0CPyNtfG+9KdX2UKGgGaAloD0MITn/2I0V7cUCUhpRSlGgVTXYBaBZHQI/ME/KQq7R1fZQoaAZoCWgPQwhha7bykkpxQJSGlFKUaBVNJgFoFkdAj8wWnTAnD3V9lChoBmgJaA9DCC+Lic2HSnJAlIaUUpRoFU17AWgWR0CPzFJ7LMcIdX2UKGgGaAloD0MIzTy5pkCZbECUhpRSlGgVTSwBaBZHQI/Mzj1f3N91fZQoaAZoCWgPQwhu2/eofwBwQJSGlFKUaBVNdgFoFkdAj86RB3RoiHV9lChoBmgJaA9DCLFre7vl9XBAlIaUUpRoFUv1aBZHQI/PkvGp++d1fZQoaAZoCWgPQwijeJW1TRFwQJSGlFKUaBVNWAFoFkdAj9WuE/Spi3V9lChoBmgJaA9DCNkngGJkLHJAlIaUUpRoFU03AWgWR0CP13h4MWoFdX2UKGgGaAloD0MIEOz4L5A0ckCUhpRSlGgVTagBaBZHQI/ZoRkEs8R1fZQoaAZoCWgPQwg4SfPHNHBvQJSGlFKUaBVNggFoFkdAj966pPykK3V9lChoBmgJaA9DCO/hkuMO83BAlIaUUpRoFU1LAWgWR0CP3ynVoYeldX2UKGgGaAloD0MIDJBoAsVUckCUhpRSlGgVTTcBaBZHQI/fUvGp++d1fZQoaAZoCWgPQwjhKeRKfQRwQJSGlFKUaBVNIwFoFkdAj99fIjnmrHV9lChoBmgJaA9DCHlYqDUNOHJAlIaUUpRoFU1DAWgWR0CP4LtqHoHLdX2UKGgGaAloD0MIjznP2NcfckCUhpRSlGgVTTgBaBZHQI/inBFd9lV1fZQoaAZoCWgPQwh63/jas0NuQJSGlFKUaBVNJgFoFkdAj+Op7sv7FnV9lChoBmgJaA9DCJ9zt+vlVnBAlIaUUpRoFU0tAWgWR0CP46ur6tT2dX2UKGgGaAloD0MIRz1Eo3sLcECUhpRSlGgVTU4BaBZHQI/l0WbgCOp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2dcd041c321d871f1a5e90eff5b66d2e8cfd287b96c6e9e7e77c1714294a03d9
3
- size 147214
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a99208006ea7e03ac90fcb886ef1d6ef09e5fa489868de6f56c197eb0fd7aa75
3
+ size 147206
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa94ff2a700>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa94ff2a790>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa94ff2a820>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa94ff2a8b0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fa94ff2a940>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fa94ff2a9d0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa94ff2aa60>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fa94ff2aaf0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa94ff2ab80>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa94ff2ac10>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa94ff2aca0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fa94ff249c0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671562184587553872,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpBFb6UVRg/yRnCPXzcWr7X1V68hq3jPAAAAAAAAAAAAAGkPeT6sj4CoSW+1FZUvt9hFbwBS8Q8AAAAAAAAAADaZRY+jJr4PmJzML4hhbm+LndZO2okFL0AAAAAAAAAAM05vzz8Kp0/xR0IPt6E1L4tx789tcVOPQAAAAAAAAAAExUVPkTKKz8QSui8c3e1vqvexz1/a6s8AAAAAAAAAADNTMi9KdgduiskljfR72oy4EAWunKkqrYAAIA/AAAAADMBLrxSh6q7yW8ouzKMiDtQKBI9rvaGvAAAgD8AAIA/Wvuxvfb8NrqiP5W1KueLtItwy7oTl1w0AACAPwAAAABzWU6+QphUPrSyGT75lBK+wmV9vN0TzDsAAAAAAAAAAHM8mb2OiqU/1lfYvjQiz76bLZC9oAoUvgAAAAAAAAAATacfvo7Sqj+aFSm/R1DQvotxJr6qZGa+AAAAAAAAAADa1Rc+/8SRP8Q8Gj9gvOO+Pz/+Pfjpaj4AAAAAAAAAALMoWT16wKE/nF2yPsrw2b5iaKU9au5ePgAAAAAAAAAAXRFRvi3bKj5uSvU96ZUwvrbueLxR9j69AAAAAAAAAABmMje94RSOuixcxzIZQNywxgpBOyxHGbMAAIA/AACAPxrXej4CgDE/Y7h0vraJnL5FTnE92DOGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,7 +69,7 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxkcJW9zcUCUhpRSlIwBbJRNHQGMAXSUR0CT2sW912aEdX2UKGgGaAloD0MILZRMTu2xb0CUhpRSlGgVTWkBaBZHQJPbrqRlpXZ1fZQoaAZoCWgPQwgTRx6I7N5xQJSGlFKUaBVNlAFoFkdAk9uuxfOUuHV9lChoBmgJaA9DCKjF4GFa3G5AlIaUUpRoFU0sAWgWR0CT27kK/mDEdX2UKGgGaAloD0MIIhtIFxt2bkCUhpRSlGgVTRQBaBZHQJPb1PnB+F11fZQoaAZoCWgPQwjhRV9BGk9vQJSGlFKUaBVNdAFoFkdAk91+bNKRMnV9lChoBmgJaA9DCNid7jxx9nBAlIaUUpRoFU0hAWgWR0CT3Y0WM0gsdX2UKGgGaAloD0MIxXb3AF14bkCUhpRSlGgVTT4BaBZHQJPd+yjYZl51fZQoaAZoCWgPQwj+J3/3jlpAQJSGlFKUaBVNAgFoFkdAk+CDXFtKqXV9lChoBmgJaA9DCFddh2pKNW1AlIaUUpRoFU0PAWgWR0CT4TgKWszVdX2UKGgGaAloD0MI5rFmZBAPbECUhpRSlGgVTR0BaBZHQJPijgYP5Hp1fZQoaAZoCWgPQwjtfaoKDYw9QJSGlFKUaBVL4WgWR0CT4ucxTKkmdX2UKGgGaAloD0MI72/QXn1TcECUhpRSlGgVTTkBaBZHQJPjgzvZyuJ1fZQoaAZoCWgPQwhJaMu5VE9zQJSGlFKUaBVNEAFoFkdAk+OoKQaJh3V9lChoBmgJaA9DCHrjpDDvSG1AlIaUUpRoFU1eAWgWR0CT5HGTs6aLdX2UKGgGaAloD0MIIQa69gXtb0CUhpRSlGgVTToBaBZHQJPk7Ho5ggJ1fZQoaAZoCWgPQwjuJvimKZJwQJSGlFKUaBVNGgFoFkdAk+T3jU/fO3V9lChoBmgJaA9DCMaGbvaHYHNAlIaUUpRoFU1CAWgWR0CT5mb8m8dxdX2UKGgGaAloD0MI1SZO7vfsb0CUhpRSlGgVTUoBaBZHQJPmjx6OYIB1fZQoaAZoCWgPQwj5LxAESFhtQJSGlFKUaBVNGAFoFkdAk+cQnYxtYXV9lChoBmgJaA9DCCkiwypeTXBAlIaUUpRoFU0VAWgWR0CT53E+PikwdX2UKGgGaAloD0MIMh6lEt6VcECUhpRSlGgVTSoBaBZHQJPnj8aXKKZ1fZQoaAZoCWgPQwiwx0RKc51xQJSGlFKUaBVNHwFoFkdAk+pNhJAdGXV9lChoBmgJaA9DCPw1WaNeqHFAlIaUUpRoFU0PAWgWR0CT66nPE87qdX2UKGgGaAloD0MIpMfvbbr5cUCUhpRSlGgVTQwBaBZHQJPr5cbBGhF1fZQoaAZoCWgPQwgXoG016+FwQJSGlFKUaBVNfANoFkdAk+wfu5SWJXV9lChoBmgJaA9DCFbzHJGvrXJAlIaUUpRoFU1OAWgWR0CT7M655JK8dX2UKGgGaAloD0MI6DHKM+8acUCUhpRSlGgVTTIBaBZHQJPuJ/nW8RN1fZQoaAZoCWgPQwi9rIkF/iBxQJSGlFKUaBVNEwFoFkdAk+5XlfZ26nV9lChoBmgJaA9DCNFALJv5+3BAlIaUUpRoFU0kAWgWR0CT7nUb1h9cdX2UKGgGaAloD0MIjzaOWIv1bkCUhpRSlGgVTTIBaBZHQJPvfL1VYIV1fZQoaAZoCWgPQwiKsOHpFftvQJSGlFKUaBVNYgFoFkdAk++4bbUPQXV9lChoBmgJaA9DCLUWZqGdM3FAlIaUUpRoFU0KAWgWR0CT8FVVxS5zdX2UKGgGaAloD0MIXp7OFSUVcUCUhpRSlGgVTScBaBZHQJPwpNQCSzR1fZQoaAZoCWgPQwggQlw5u2ZxQJSGlFKUaBVNLAFoFkdAk/Dt70Fr23V9lChoBmgJaA9DCEPHDirxq3JAlIaUUpRoFU2oAmgWR0CT8aTqSowVdX2UKGgGaAloD0MIl+Kqsu/gakCUhpRSlGgVTU0BaBZHQJPzIyylenh1fZQoaAZoCWgPQwhyFva0g/xxQJSGlFKUaBVNAQFoFkdAk/VFKK5083V9lChoBmgJaA9DCMNGWb/Zk3FAlIaUUpRoFU03AWgWR0CT9YKZlWfcdX2UKGgGaAloD0MIs12hD5YgbkCUhpRSlGgVTRYBaBZHQJP12U3XI2h1fZQoaAZoCWgPQwgo84++SZpwQJSGlFKUaBVNLAFoFkdAk/ZsVclgMXV9lChoBmgJaA9DCL+2fvpPwnFAlIaUUpRoFU08AWgWR0CT+A9VFQVLdX2UKGgGaAloD0MI/dtlv+6Hb0CUhpRSlGgVTRoBaBZHQJP4D1yvLYB1fZQoaAZoCWgPQwiBJVex+HtCQJSGlFKUaBVL0mgWR0CT+SLm6oVEdX2UKGgGaAloD0MI/DkF+dl8cUCUhpRSlGgVTTMBaBZHQJP5QpsoDxN1fZQoaAZoCWgPQwhxWBr4UQdyQJSGlFKUaBVNHwFoFkdAk/mRufmLcnV9lChoBmgJaA9DCEDa/wArUXBAlIaUUpRoFU0NAWgWR0CT+m1cMVk+dX2UKGgGaAloD0MIRS+jWK42cECUhpRSlGgVTUYBaBZHQJQOb1OCXhR1fZQoaAZoCWgPQwjFVzuK8xZwQJSGlFKUaBVNgQFoFkdAlA8jF6zE8HV9lChoBmgJaA9DCE4oRMAhr25AlIaUUpRoFU0FAWgWR0CUD6xsl9jPdX2UKGgGaAloD0MI7N/1mbNubECUhpRSlGgVTQABaBZHQJQSMSYgJTl1fZQoaAZoCWgPQwhK8fEJWXVxQJSGlFKUaBVNowFoFkdAlBLFw5vLo3V9lChoBmgJaA9DCBWQ9j8AN3FAlIaUUpRoFU0CAWgWR0CUEuvECNjtdX2UKGgGaAloD0MIgSOBBptZakCUhpRSlGgVTbMBaBZHQJQTBpUPxx11fZQoaAZoCWgPQwhX7C+7J0duQJSGlFKUaBVNLAFoFkdAlBNHpSrHVHV9lChoBmgJaA9DCDV5ymq6bG1AlIaUUpRoFU0wAWgWR0CUE5cLBsQ/dX2UKGgGaAloD0MI1PIDVzn5ckCUhpRSlGgVS/xoFkdAlBUS8SPEKnV9lChoBmgJaA9DCJ+rrdifIXFAlIaUUpRoFU0wAWgWR0CUFc2KEWZadX2UKGgGaAloD0MIRrJHqNlMcECUhpRSlGgVTQMBaBZHQJQWjz+WGAV1fZQoaAZoCWgPQwibcK/MG+tyQJSGlFKUaBVNLwFoFkdAlBc95UtI1HV9lChoBmgJaA9DCE4mbhWEiXBAlIaUUpRoFU0+AWgWR0CUF3Cqp97XdX2UKGgGaAloD0MIK/aX3ZNLbUCUhpRSlGgVTSMBaBZHQJQYWAwwj+t1fZQoaAZoCWgPQwi7tOGwNLVxQJSGlFKUaBVNFAFoFkdAlBkI5YHPeHV9lChoBmgJaA9DCMdkcf8R1m9AlIaUUpRoFU1oAWgWR0CUG5JhOP/8dX2UKGgGaAloD0MIQKIJFDHqbkCUhpRSlGgVTQkBaBZHQJQcxV81Gb11fZQoaAZoCWgPQwhblq/LsDdzQJSGlFKUaBVNHwFoFkdAlBzQgs9SuXV9lChoBmgJaA9DCHUBLzNsh3FAlIaUUpRoFU0pAWgWR0CUHQgbZOBUdX2UKGgGaAloD0MIRRK9jOKwcUCUhpRSlGgVTTgBaBZHQJQdEdYGMXJ1fZQoaAZoCWgPQwhhp1g1CIdfQJSGlFKUaBVN6ANoFkdAlB2wC0WuYHV9lChoBmgJaA9DCIy+gjTjcXFAlIaUUpRoFU0wAWgWR0CUHbkgfU4JdX2UKGgGaAloD0MIEjElkujDcUCUhpRSlGgVTToBaBZHQJQdx+SbH6x1fZQoaAZoCWgPQwjy0k1iUNtxQJSGlFKUaBVNJQJoFkdAlB5OCkGiYnV9lChoBmgJaA9DCCBdbFop63BAlIaUUpRoFU0sAWgWR0CUH0EEC/47dX2UKGgGaAloD0MIjgdb7PbYbECUhpRSlGgVTTYBaBZHQJQg749HMEB1fZQoaAZoCWgPQwjrkJvhxpNyQJSGlFKUaBVNDgFoFkdAlCFdQTEiuHV9lChoBmgJaA9DCKgY52/ChXBAlIaUUpRoFU1EAWgWR0CUIgHxBmf5dX2UKGgGaAloD0MIfjhIiLJWcUCUhpRSlGgVTUkBaBZHQJQiVFhG6PN1fZQoaAZoCWgPQwjRBfUts61yQJSGlFKUaBVNgwFoFkdAlCKnDej2z3V9lChoBmgJaA9DCBu7RPWWQ3FAlIaUUpRoFU0vAWgWR0CUIwHVPN3XdX2UKGgGaAloD0MIejiB6bS1bUCUhpRSlGgVS/5oFkdAlCS76UJOWXV9lChoBmgJaA9DCP1LUpniHG9AlIaUUpRoFU0uAWgWR0CUJRNgjQiSdX2UKGgGaAloD0MI9BlQb4YMcUCUhpRSlGgVTQABaBZHQJQljQ6ZH/d1fZQoaAZoCWgPQwhS7j7Hx9FwQJSGlFKUaBVNIQFoFkdAlCWeObRWtHV9lChoBmgJaA9DCIcW2c63N3BAlIaUUpRoFU0aAWgWR0CUJaZPEbYLdX2UKGgGaAloD0MI/5QqUbYWckCUhpRSlGgVTSQBaBZHQJQluuMdcSp1fZQoaAZoCWgPQwgjFcYWgqdyQJSGlFKUaBVNIwFoFkdAlCZvag261HV9lChoBmgJaA9DCHqmlxhLuHJAlIaUUpRoFU0kAWgWR0CUJnA7gbZOdX2UKGgGaAloD0MIa/RqgJJjcECUhpRSlGgVTR8BaBZHQJQn6otL+P11fZQoaAZoCWgPQwgjTFEuzY9xQJSGlFKUaBVNYgFoFkdAlCkLyH2ys3V9lChoBmgJaA9DCL37471qx3JAlIaUUpRoFU0nAWgWR0CUKopMpPRBdX2UKGgGaAloD0MIx5+obNhgbECUhpRSlGgVTRwBaBZHQJQq4lzEJjV1fZQoaAZoCWgPQwhlUkMbAHpwQJSGlFKUaBVNHAFoFkdAlCtQjyFwk3V9lChoBmgJaA9DCGrecYrOC3BAlIaUUpRoFU0jAWgWR0CUK/ZZ0SyudX2UKGgGaAloD0MIup9TkJ/FQUCUhpRSlGgVS9ZoFkdAlCwH6/IsAnV9lChoBmgJaA9DCMQmMnNBlXBAlIaUUpRoFU0yAWgWR0CULN6vJRwZdX2UKGgGaAloD0MIZ+22C41JcUCUhpRSlGgVTTsBaBZHQJQvIlnh86V1fZQoaAZoCWgPQwiPG343nbFyQJSGlFKUaBVNIgFoFkdAlC8u76Hj63V9lChoBmgJaA9DCPFmDd7XqG5AlIaUUpRoFU0BAWgWR0CULzCA+Y+jdX2UKGgGaAloD0MITIxl+mXAckCUhpRSlGgVTSIBaBZHQJQva0UoKD11fZQoaAZoCWgPQwgvTny1I9ltQJSGlFKUaBVNCQFoFkdAlC97ZSNwSHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
@@ -78,7 +78,7 @@
78
  "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f6fbbfd30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f6fbbfdc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f6fbbfe50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f6fbbfee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9f6fbbff70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9f6fbc6040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f6fbc60d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9f6fbc6160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f6fbc61f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f6fbc6280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f6fbc6310>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9f6fbc3150>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671568341075858270,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAzRT05plM/KjInPExGxr75BbE8CiVtvAAAAAAAAAAAZp1ovoQVDj9LfrC8K5quvri+6L1v0K89AAAAAAAAAABA27g9TtCqPet3Yb4K6Aa+la0xvSV9irwAAAAAAAAAAPMaxT0fzBs+7aVPvlSBN76xGE68V8Y5OwAAAAAAAAAA+iU1PmX98j4y3NC9uzxqvnYJnTz+6Pi7AAAAAAAAAADA+7I9e+6Wut6KhbTsHkEwmBdduhKogjMAAAAAAACAPzpUQ77Ijp+8ckmFu+cP1LmlwQ4+ZWCvOgAAgD8AAIA/TQBSve0OnD9CGJ6+7Qn0vkS0n73D5x2+AAAAAAAAAABOuba+TmTwPmb8Wj7RS66+ouwbvZNHZT0AAAAAAAAAAGb+l7x64l8+QbEQPnM5Wb67vVs9hrsOPAAAAAAAAAAAU44+PqDEXz+jsmI+8zOsvpNMOD5Oa6E9AAAAAAAAAACz17U99jBpugBMVbvhzgM4YDMAOzJVAzoAAIA/AACAP+b3uD1cSwC6+sA0u3cLzbOEXp+68LpYOgAAgD8AAIA/gA6CPqGJzT5T7XG+vRtovoBvhLsrH0E9AAAAAAAAAABzI6y9Yxt8P2YheL2TedO+d/aIvd6cUbwAAAAAAAAAALOr6r15utA+EsyUPebkh75N0pg8E4H+PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuagWEcWCcECUhpRSlIwBbJRNHgGMAXSUR0CO+1BeokzHdX2UKGgGaAloD0MIo5V7gVlra0CUhpRSlGgVTR4BaBZHQI77dgH/tIF1fZQoaAZoCWgPQwhXXvI/eXBwQJSGlFKUaBVNNwFoFkdAjvy3lr/KhnV9lChoBmgJaA9DCDFe86rOs3BAlIaUUpRoFU1OAWgWR0CO/7YyO7xvdX2UKGgGaAloD0MIrtf0oGCacECUhpRSlGgVTSsBaBZHQI8AaAMDwH91fZQoaAZoCWgPQwidnQyOEoJwQJSGlFKUaBVNKgFoFkdAjybj9XLeRHV9lChoBmgJaA9DCP3YJD9iOHFAlIaUUpRoFU1+AWgWR0CPJ5WPtD2KdX2UKGgGaAloD0MIw2SqYJQgcECUhpRSlGgVS/9oFkdAjyoz2WY4Q3V9lChoBmgJaA9DCL7e/fFe82tAlIaUUpRoFU1hAWgWR0CPKkdXko4NdX2UKGgGaAloD0MIKVsk7cZCbUCUhpRSlGgVTS8BaBZHQI8qWjGkvbp1fZQoaAZoCWgPQwi+9WG90T5xQJSGlFKUaBVNIAFoFkdAjyt2eg+Ql3V9lChoBmgJaA9DCK5H4XoUkjpAlIaUUpRoFUvcaBZHQI8s9OwgTyt1fZQoaAZoCWgPQwiGdk6zQKNwQJSGlFKUaBVNegFoFkdAjyz9SuQp4XV9lChoBmgJaA9DCFD+7h01/i3AlIaUUpRoFUu/aBZHQI8tSCz1K5F1fZQoaAZoCWgPQwgkD0QWKctwQJSGlFKUaBVNnAFoFkdAjzNrXlKbrnV9lChoBmgJaA9DCP0yGCMSHXBAlIaUUpRoFU06AWgWR0CPNNjS5RTCdX2UKGgGaAloD0MINNqqJDIpcECUhpRSlGgVTTMBaBZHQI81uiQDFId1fZQoaAZoCWgPQwitbvWcdAtrQJSGlFKUaBVNfgFoFkdAjzX85jpcHHV9lChoBmgJaA9DCFA6kWAqrHFAlIaUUpRoFU0iAWgWR0CPOSCdSVGDdX2UKGgGaAloD0MIk/yIX3GlcECUhpRSlGgVTUwBaBZHQI86BNfw7T51fZQoaAZoCWgPQwjjUwCMZ0dxQJSGlFKUaBVNMQFoFkdAjzrPcBU70XV9lChoBmgJaA9DCAjKbfvekHFAlIaUUpRoFU0lAWgWR0CPPNBXS0BwdX2UKGgGaAloD0MIE30+ygj1cUCUhpRSlGgVS/1oFkdAjz289GI9DHV9lChoBmgJaA9DCCx96IJ6DXJAlIaUUpRoFU1eAWgWR0CPQKrCFbmmdX2UKGgGaAloD0MIm6xRD5EJc0CUhpRSlGgVTbsBaBZHQI9CVklNUOx1fZQoaAZoCWgPQwhxHHi1HNRwQJSGlFKUaBVNSwFoFkdAj0K4TbnHN3V9lChoBmgJaA9DCJje/lx023FAlIaUUpRoFU13AWgWR0CPQ++cpb2UdX2UKGgGaAloD0MIBb8NMd6tcECUhpRSlGgVTWABaBZHQI9EOii7Ci11fZQoaAZoCWgPQwjytPzAVZxcQJSGlFKUaBVN6ANoFkdAj0nj6N2ki3V9lChoBmgJaA9DCKoQj8RLwW9AlIaUUpRoFU0pAWgWR0CPSuPjn3cpdX2UKGgGaAloD0MIgXozan6vcUCUhpRSlGgVTUcBaBZHQI9NB+YtxuN1fZQoaAZoCWgPQwjTiJl9HvpwQJSGlFKUaBVNGwFoFkdAj03h/RVp9XV9lChoBmgJaA9DCDUqcLJNBHBAlIaUUpRoFU1dAWgWR0CPTf8/lhgFdX2UKGgGaAloD0MIVyHlJ9WKbECUhpRSlGgVTS8BaBZHQI9RWjXWe6J1fZQoaAZoCWgPQwgHXi13ZjlxQJSGlFKUaBVNMAFoFkdAj1TBVlwtKHV9lChoBmgJaA9DCOc24V4ZUG9AlIaUUpRoFU0eAWgWR0CPWT7tRekYdX2UKGgGaAloD0MIyvrNxHS0cECUhpRSlGgVTUABaBZHQI9Zqx7iQ1d1fZQoaAZoCWgPQwiPiZRm86hrQJSGlFKUaBVNGgFoFkdAj1q0x20Re3V9lChoBmgJaA9DCE+Q2O4eVXJAlIaUUpRoFU0sAmgWR0CPXP8Rcu8LdX2UKGgGaAloD0MIp5at9cWLcUCUhpRSlGgVTVoBaBZHQI9dvq/ub7V1fZQoaAZoCWgPQwi8PnPWJ8lvQJSGlFKUaBVNRgFoFkdAj1387IT4+XV9lChoBmgJaA9DCNBHGXGBEXJAlIaUUpRoFU0sAWgWR0CPYciSq2jPdX2UKGgGaAloD0MIIsK/CNo/cUCUhpRSlGgVTVIBaBZHQI9lyIgvDgt1fZQoaAZoCWgPQwjyYIvdvqFwQJSGlFKUaBVNTAFoFkdAj2eRbKRuCXV9lChoBmgJaA9DCCjzj75JsxFAlIaUUpRoFUvcaBZHQI9qtknTiKl1fZQoaAZoCWgPQwhrY+yEV25wQJSGlFKUaBVNgwJoFkdAj2ueYD1XeXV9lChoBmgJaA9DCJEqilfZ9G9AlIaUUpRoFU2aAWgWR0CPbqdaMaS+dX2UKGgGaAloD0MIArovZ/ascECUhpRSlGgVTW4BaBZHQI9uwJXyRSx1fZQoaAZoCWgPQwi77NedLlZxQJSGlFKUaBVNRwFoFkdAj28HvlU6xXV9lChoBmgJaA9DCNv66T+rC3FAlIaUUpRoFU0TAWgWR0CPb4Q4jrzHdX2UKGgGaAloD0MI41RrYZYgbkCUhpRSlGgVTTwBaBZHQI+ZGJSBK+V1fZQoaAZoCWgPQwjidf2C3W5iQJSGlFKUaBVN6ANoFkdAj5lIESuhbnV9lChoBmgJaA9DCLlvtU5ceXBAlIaUUpRoFU0/AWgWR0CPm1zYEnstdX2UKGgGaAloD0MI66pALUYkckCUhpRSlGgVTUMBaBZHQI+cNS88La51fZQoaAZoCWgPQwgogc05OA9xQJSGlFKUaBVNEQFoFkdAj5ygMlTm4nV9lChoBmgJaA9DCDwVcM9zP25AlIaUUpRoFU1UAWgWR0CPnW5uIhyKdX2UKGgGaAloD0MIGVWGcbdNcECUhpRSlGgVTTgCaBZHQI+fBW7voeR1fZQoaAZoCWgPQwjG3/YEiStAQJSGlFKUaBVL8mgWR0CPohyxRl6JdX2UKGgGaAloD0MImlshrMbqMUCUhpRSlGgVS9ZoFkdAj6McmrsByXV9lChoBmgJaA9DCBfTTPc6DXBAlIaUUpRoFU11AWgWR0CPprlFtsN2dX2UKGgGaAloD0MIMxe4PFYnbkCUhpRSlGgVTWcBaBZHQI+nN6cAiml1fZQoaAZoCWgPQwgKMZdU7elwQJSGlFKUaBVNLAFoFkdAj6pGPgeijHV9lChoBmgJaA9DCHyakxfZD3JAlIaUUpRoFU1vAWgWR0CPqtXPJJXhdX2UKGgGaAloD0MI+KkqNJBwbkCUhpRSlGgVTUwBaBZHQI+rxa/yoXN1fZQoaAZoCWgPQwhvD0JAvjBwQJSGlFKUaBVNCwFoFkdAj6v9Whh6SnV9lChoBmgJaA9DCLQc6KG2ZlBAlIaUUpRoFU0bAWgWR0CPrNyMkyDadX2UKGgGaAloD0MILoz0onY8bUCUhpRSlGgVTWQBaBZHQI+tZJRO1v51fZQoaAZoCWgPQwhcPSe9775iQJSGlFKUaBVN6ANoFkdAj62lW4mTknV9lChoBmgJaA9DCFn5ZTBGzE9AlIaUUpRoFUvtaBZHQI+vdgBtDUp1fZQoaAZoCWgPQwiFl+DUB7VtQJSGlFKUaBVNMQFoFkdAj7CkEcKgI3V9lChoBmgJaA9DCAYtJGC0PHJAlIaUUpRoFU0/AWgWR0CPsLj1f3N+dX2UKGgGaAloD0MIBvLs8i0tb0CUhpRSlGgVTT0BaBZHQI+yYJNTLnt1fZQoaAZoCWgPQwjfqYB7HthwQJSGlFKUaBVNCAFoFkdAj7PI6bONYXV9lChoBmgJaA9DCOhqK/aX8mxAlIaUUpRoFU2DAWgWR0CPtoU9pyp8dX2UKGgGaAloD0MII2WLpN3/cECUhpRSlGgVTTYBaBZHQI+4pa/yoXN1fZQoaAZoCWgPQwgIA8+9x/JwQJSGlFKUaBVNHQFoFkdAj7qemm+Cb3V9lChoBmgJaA9DCEa0HVN3PHBAlIaUUpRoFU0sAWgWR0CPwIKbayrxdX2UKGgGaAloD0MIlZ9U+3T6S0CUhpRSlGgVS+hoFkdAj8JtQCSzPnV9lChoBmgJaA9DCE9Y4gFlhnFAlIaUUpRoFU1qAWgWR0CPwzDxb0OFdX2UKGgGaAloD0MIBORLqCAFcECUhpRSlGgVTUYBaBZHQI/Er04BFNN1fZQoaAZoCWgPQwgZG7rZnwtwQJSGlFKUaBVNMgFoFkdAj8XhPCVKPHV9lChoBmgJaA9DCGItPgXAwnJAlIaUUpRoFU1FAWgWR0CPyNtfG+9KdX2UKGgGaAloD0MITn/2I0V7cUCUhpRSlGgVTXYBaBZHQI/ME/KQq7R1fZQoaAZoCWgPQwhha7bykkpxQJSGlFKUaBVNJgFoFkdAj8wWnTAnD3V9lChoBmgJaA9DCC+Lic2HSnJAlIaUUpRoFU17AWgWR0CPzFJ7LMcIdX2UKGgGaAloD0MIzTy5pkCZbECUhpRSlGgVTSwBaBZHQI/Mzj1f3N91fZQoaAZoCWgPQwhu2/eofwBwQJSGlFKUaBVNdgFoFkdAj86RB3RoiHV9lChoBmgJaA9DCLFre7vl9XBAlIaUUpRoFUv1aBZHQI/PkvGp++d1fZQoaAZoCWgPQwijeJW1TRFwQJSGlFKUaBVNWAFoFkdAj9WuE/Spi3V9lChoBmgJaA9DCNkngGJkLHJAlIaUUpRoFU03AWgWR0CP13h4MWoFdX2UKGgGaAloD0MIEOz4L5A0ckCUhpRSlGgVTagBaBZHQI/ZoRkEs8R1fZQoaAZoCWgPQwg4SfPHNHBvQJSGlFKUaBVNggFoFkdAj966pPykK3V9lChoBmgJaA9DCO/hkuMO83BAlIaUUpRoFU1LAWgWR0CP3ynVoYeldX2UKGgGaAloD0MIDJBoAsVUckCUhpRSlGgVTTcBaBZHQI/fUvGp++d1fZQoaAZoCWgPQwjhKeRKfQRwQJSGlFKUaBVNIwFoFkdAj99fIjnmrHV9lChoBmgJaA9DCHlYqDUNOHJAlIaUUpRoFU1DAWgWR0CP4LtqHoHLdX2UKGgGaAloD0MIjznP2NcfckCUhpRSlGgVTTgBaBZHQI/inBFd9lV1fZQoaAZoCWgPQwh63/jas0NuQJSGlFKUaBVNJgFoFkdAj+Op7sv7FnV9lChoBmgJaA9DCJ9zt+vlVnBAlIaUUpRoFU0tAWgWR0CP46ur6tT2dX2UKGgGaAloD0MIRz1Eo3sLcECUhpRSlGgVTU4BaBZHQI/l0WbgCOp1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
 
78
  "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
+ "gae_lambda": 0.95,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e0c25a195d92f6e19fbd85d8679feae926cc47e1ebb251b364d4f4ce51a6cef
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67cc09a528a541b27ae82f0a113df29cb0b9192f2eaaf158c0614cce2de86a89
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1dce95bd15a90969dae86e55a40b57cfe5a753b7a20e64702a0f088045267413
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e4c19a7ee87b0b5a305600b75e7376c81c42b8a04a743c6331f8c29c46e8455
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 259.79687769227814, "std_reward": 18.07981659383706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T19:14:41.791555"}
 
1
+ {"mean_reward": 261.27639294091597, "std_reward": 14.142133054755396, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T20:50:12.380336"}