File size: 5,345 Bytes
94d1e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d069c8
94d1e0e
2d069c8
94d1e0e
 
627cb6d
2d069c8
 
 
 
627cb6d
2d069c8
627cb6d
2d069c8
 
 
 
 
 
 
 
 
 
94d1e0e
 
 
 
 
 
627cb6d
94d1e0e
 
627cb6d
94d1e0e
 
627cb6d
 
 
 
 
 
 
94d1e0e
627cb6d
 
94d1e0e
627cb6d
 
 
 
7f8d5cd
2d069c8
94d1e0e
 
 
 
 
 
 
 
 
7f8d5cd
94d1e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627cb6d
2d069c8
 
627cb6d
2d069c8
627cb6d
2d069c8
 
 
 
 
 
 
 
627cb6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 1" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records."
  example_title: "Question Generation Example 2" 
- text: "generate question: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic,  <hl> Cadillac Records <hl> ."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/t5-large-subjqa-movies
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_subjqa
      type: movies
      args: movies
    metrics:
    - name: BLEU4
      type: bleu4
      value: 4.166296073872047e-06
    - name: ROUGE-L
      type: rouge-l
      value: 0.2506432063607754
    - name: METEOR
      type: meteor
      value: 0.2170496930980009
    - name: BERTScore
      type: bertscore
      value: 0.9364330509266297
    - name: MoverScore
      type: moverscore
      value: 0.638848285919723
---

# Model Card of `lmqg/t5-large-subjqa-movies`
This model is fine-tuned version of [lmqg/t5-large-squad](https://huggingface.co/lmqg/t5-large-squad) for question generation task on the 
[lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (dataset_name: movies) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
This model is continuously fine-tuned with [lmqg/t5-large-squad](https://huggingface.co/lmqg/t5-large-squad).

Please cite our paper if you use the model ([https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)).

```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```

### Overview
- **Language model:** [lmqg/t5-large-squad](https://huggingface.co/lmqg/t5-large-squad)   
- **Language:** en  
- **Training data:** [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) (movies)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python

from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='en', model='lmqg/t5-large-subjqa-movies')
# model prediction
question = model.generate_q(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"])

```

- With `transformers`
```python

from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/t5-large-subjqa-movies')
# question generation
question = pipe('generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')

```

## Evaluation Metrics


### Metrics

| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_subjqa](https://huggingface.co/datasets/lmqg/qg_subjqa) | movies | 0.0 | 0.251 | 0.217 | 0.936 | 0.639 | [link](https://huggingface.co/lmqg/t5-large-subjqa-movies/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_subjqa.movies.json) | 




## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_subjqa
 - dataset_name: movies
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: ['qg']
 - model: lmqg/t5-large-squad
 - max_length: 512
 - max_length_output: 32
 - epoch: 6
 - batch: 16
 - lr: 0.0001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.0

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/t5-large-subjqa-movies/raw/main/trainer_config.json).

## Citation
```

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```