Katsumata420 commited on
Commit
e470306
·
verified ·
1 Parent(s): 49bed2a

Upload 92 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 1_Pooling/config.json +10 -0
  2. config.json +47 -0
  3. config_sentence_transformers.json +14 -0
  4. jmteb/jmteb.jsonnet +22 -0
  5. jmteb/results/Classification/scores_amazon_counterfactual_classification.json +23 -0
  6. jmteb/results/Classification/scores_amazon_review_classification.json +23 -0
  7. jmteb/results/Classification/scores_massive_intent_classification.json +23 -0
  8. jmteb/results/Classification/scores_massive_scenario_classification.json +23 -0
  9. jmteb/results/Clustering/scores_livedoor_news.json +36 -0
  10. jmteb/results/Clustering/scores_mewsc16.json +36 -0
  11. jmteb/results/PairClassification/scores_paws_x_ja.json +41 -0
  12. jmteb/results/Reranking/scores_esci.json +31 -0
  13. jmteb/results/Retrieval/scores_jagovfaqs_22k.json +43 -0
  14. jmteb/results/Retrieval/scores_jaqket.json +43 -0
  15. jmteb/results/Retrieval/scores_mrtydi.json +43 -0
  16. jmteb/results/Retrieval/scores_nlp_journal_abs_intro.json +43 -0
  17. jmteb/results/Retrieval/scores_nlp_journal_title_abs.json +43 -0
  18. jmteb/results/Retrieval/scores_nlp_journal_title_intro.json +43 -0
  19. jmteb/results/STS/scores_jsick.json +31 -0
  20. jmteb/results/STS/scores_jsts.json +31 -0
  21. jmteb/results/summary.json +62 -0
  22. jmteb/tasks/amazon_counterfactual_classification.jsonnet +32 -0
  23. jmteb/tasks/amazon_review_classification.jsonnet +32 -0
  24. jmteb/tasks/esci.jsonnet +33 -0
  25. jmteb/tasks/jagovfaqs_22k.jsonnet +33 -0
  26. jmteb/tasks/jaqket.jsonnet +33 -0
  27. jmteb/tasks/jsick.jsonnet +25 -0
  28. jmteb/tasks/jsts.jsonnet +25 -0
  29. jmteb/tasks/livedoor_news.jsonnet +24 -0
  30. jmteb/tasks/massive_intent_classification.jsonnet +32 -0
  31. jmteb/tasks/massive_scenario_classification.jsonnet +32 -0
  32. jmteb/tasks/mewsc16.jsonnet +24 -0
  33. jmteb/tasks/mrtydi.jsonnet +34 -0
  34. jmteb/tasks/nlp_journal_abs_intro.jsonnet +33 -0
  35. jmteb/tasks/nlp_journal_title_abs.jsonnet +33 -0
  36. jmteb/tasks/nlp_journal_title_intro.jsonnet +33 -0
  37. jmteb/tasks/paws_x_ja.jsonnet +25 -0
  38. model.safetensors +3 -0
  39. modules.json +20 -0
  40. mteb/models/__init__.py +10 -0
  41. mteb/models/default.py +4 -0
  42. mteb/models/retrieva.py +13 -0
  43. mteb/models/retrieva_en.py +15 -0
  44. mteb/mteb_eval.py +49 -0
  45. mteb/results/AmazonCounterfactualClassification.json +95 -0
  46. mteb/results/ArXivHierarchicalClusteringP2P.json +46 -0
  47. mteb/results/ArXivHierarchicalClusteringS2S.json +46 -0
  48. mteb/results/ArguAna.json +158 -0
  49. mteb/results/AskUbuntuDupQuestions.json +26 -0
  50. mteb/results/BIOSSES.json +26 -0
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sbintuitions/modernbert-ja-310m",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "cls",
13
+ "cls_token_id": 6,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 2,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 25,
37
+ "pad_token_id": 3,
38
+ "position_embedding_type": "rope",
39
+ "reference_compile": false,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 4,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "bfloat16",
45
+ "transformers_version": "4.49.0",
46
+ "vocab_size": 102400
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "Retrieval-query": "関連した文書を探すために次の文を表現して\n",
9
+ "Retrieval-passage": "次の文章を表現して\n",
10
+ "default": "同じ意味の文を探すために次の文を表現して\n"
11
+ },
12
+ "default_prompt_name": "default",
13
+ "similarity_fn_name": "cosine"
14
+ }
jmteb/jmteb.jsonnet ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Classification
2
+ (import './tasks/amazon_review_classification.jsonnet') +
3
+ (import './tasks/amazon_counterfactual_classification.jsonnet') +
4
+ (import './tasks/massive_intent_classification.jsonnet') +
5
+ (import './tasks/massive_scenario_classification.jsonnet') +
6
+ // Clustering
7
+ (import './tasks/livedoor_news.jsonnet') +
8
+ (import './tasks/mewsc16.jsonnet') +
9
+ // STS
10
+ (import './tasks/jsts.jsonnet') +
11
+ (import './tasks/jsick.jsonnet') +
12
+ // Pair Classification
13
+ (import './tasks/paws_x_ja.jsonnet') +
14
+ // Retrieval
15
+ (import './tasks/jagovfaqs_22k.jsonnet') +
16
+ (import './tasks/mrtydi.jsonnet') +
17
+ (import './tasks/jaqket.jsonnet') +
18
+ (import './tasks/nlp_journal_title_abs.jsonnet') +
19
+ (import './tasks/nlp_journal_title_intro.jsonnet') +
20
+ (import './tasks/nlp_journal_abs_intro.jsonnet') +
21
+ // Reranking
22
+ (import './tasks/esci.jsonnet')
jmteb/results/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7690321272929969,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.907725321888412,
9
+ "macro_f1": 0.672212134596195
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9313304721030042,
13
+ "macro_f1": 0.759173126614987
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9346895074946466,
19
+ "macro_f1": 0.7690321272929969
20
+ }
21
+ }
22
+ }
23
+ }
jmteb/results/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.5998172978417656,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4392,
9
+ "macro_f1": 0.4293118582606878
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.5954,
13
+ "macro_f1": 0.5900254170486042
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.6046,
19
+ "macro_f1": 0.5998172978417656
20
+ }
21
+ }
22
+ }
23
+ }
jmteb/results/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8153216318848042,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7998032464338416,
9
+ "macro_f1": 0.7840757781194604
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8666994589276931,
13
+ "macro_f1": 0.8136832325973621
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8638197713517148,
19
+ "macro_f1": 0.8153216318848042
20
+ }
21
+ }
22
+ }
23
+ }
jmteb/results/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.9014240422977099,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8711264141662568,
9
+ "macro_f1": 0.8669048603927182
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9011313330054107,
13
+ "macro_f1": 0.893877736725918
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9041694687289845,
19
+ "macro_f1": 0.9014240422977099
20
+ }
21
+ }
22
+ }
23
+ }
jmteb/results/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.513545352498706,
4
+ "details": {
5
+ "optimal_clustering_model_name": "MiniBatchKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5140841329017503,
9
+ "homogeneity_score": 0.5052453627266255,
10
+ "completeness_score": 0.5232376606138658
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.49350214308585105,
14
+ "homogeneity_score": 0.4873068478340836,
15
+ "completeness_score": 0.49985699253269256
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.4843217444145435,
19
+ "homogeneity_score": 0.48227844059111663,
20
+ "completeness_score": 0.48638243593076996
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5045054710151884,
24
+ "homogeneity_score": 0.5008173784727417,
25
+ "completeness_score": 0.5082482858481403
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "MiniBatchKMeans": {
30
+ "v_measure_score": 0.513545352498706,
31
+ "homogeneity_score": 0.5099866166637427,
32
+ "completeness_score": 0.5171541037503654
33
+ }
34
+ }
35
+ }
36
+ }
jmteb/results/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.46097799248263915,
4
+ "details": {
5
+ "optimal_clustering_model_name": "AgglomerativeClustering",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.44916188797792883,
9
+ "homogeneity_score": 0.49147958259688423,
10
+ "completeness_score": 0.41355380899134786
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5246463072498976,
14
+ "homogeneity_score": 0.5663240673439284,
15
+ "completeness_score": 0.4886824631609394
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.39737928507985054,
19
+ "homogeneity_score": 0.43737570574597956,
20
+ "completeness_score": 0.36408503061737185
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.5160631364820057,
24
+ "homogeneity_score": 0.5643018754693391,
25
+ "completeness_score": 0.4754221824714356
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "AgglomerativeClustering": {
30
+ "v_measure_score": 0.46097799248263915,
31
+ "homogeneity_score": 0.4967671593496861,
32
+ "completeness_score": 0.42999907535625936
33
+ }
34
+ }
35
+ }
36
+ }
jmteb/results/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6097337006427915,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distances",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": -0.05995553731918335,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.648,
15
+ "accuracy_threshold": 6.833098888397217,
16
+ "binary_f1": 0.6174142480211082,
17
+ "binary_f1_threshold": 12.269868850708008
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.6465,
21
+ "accuracy_threshold": 0.3111177384853363,
22
+ "binary_f1": 0.6183574879227053,
23
+ "binary_f1_threshold": 0.564425528049469
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.646,
27
+ "accuracy_threshold": 0.9595050811767578,
28
+ "binary_f1": 0.618229854689564,
29
+ "binary_f1_threshold": 0.8423429727554321
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distances": {
34
+ "accuracy": 0.615,
35
+ "accuracy_threshold": 0.3111177384853363,
36
+ "binary_f1": 0.6097337006427915,
37
+ "binary_f1_threshold": 0.564425528049469
38
+ }
39
+ }
40
+ }
41
+ }
jmteb/results/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9354186207520728,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9477835725930323,
9
+ "ndcg@20": 0.9591879767306916,
10
+ "ndcg@40": 0.9667225066187783
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9476098413475649,
14
+ "ndcg@20": 0.9589807025526251,
15
+ "ndcg@40": 0.9665249592723859
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9477934218097472,
19
+ "ndcg@20": 0.9591607950860748,
20
+ "ndcg@40": 0.9666650348508583
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "euclidean_distance": {
25
+ "ndcg@10": 0.9354186207520728,
26
+ "ndcg@20": 0.9515087918879773,
27
+ "ndcg@40": 0.9603281546305616
28
+ }
29
+ }
30
+ }
31
+ }
jmteb/results/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7281126791454011,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5946183094472068,
9
+ "accuracy@3": 0.7657209710441649,
10
+ "accuracy@5": 0.8218777420298333,
11
+ "accuracy@10": 0.8724773325533782,
12
+ "ndcg@10": 0.7358693711267098,
13
+ "mrr@10": 0.6918434332883007
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.5937408599005557,
17
+ "accuracy@3": 0.7665984205908161,
18
+ "accuracy@5": 0.8215852588476162,
19
+ "accuracy@10": 0.8724773325533782,
20
+ "ndcg@10": 0.7357749849472581,
21
+ "mrr@10": 0.6917069411365993
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5949107926294238,
25
+ "accuracy@3": 0.7642585551330798,
26
+ "accuracy@5": 0.8210002924831822,
27
+ "accuracy@10": 0.8736472652822462,
28
+ "ndcg@10": 0.7361924814420154,
29
+ "mrr@10": 0.6919672743817233
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.591812865497076,
35
+ "accuracy@3": 0.7538011695906432,
36
+ "accuracy@5": 0.8114035087719298,
37
+ "accuracy@10": 0.8649122807017544,
38
+ "ndcg@10": 0.7281126791454011,
39
+ "mrr@10": 0.6842285110925452
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.6756415397851852,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5145728643216081,
9
+ "accuracy@3": 0.7185929648241206,
10
+ "accuracy@5": 0.770854271356784,
11
+ "accuracy@10": 0.8190954773869347,
12
+ "ndcg@10": 0.6730166004888566,
13
+ "mrr@10": 0.6255224535375292
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.5125628140703518,
17
+ "accuracy@3": 0.7185929648241206,
18
+ "accuracy@5": 0.770854271356784,
19
+ "accuracy@10": 0.8190954773869347,
20
+ "ndcg@10": 0.6728020927265955,
21
+ "mrr@10": 0.625163515992662
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5175879396984925,
25
+ "accuracy@3": 0.7175879396984924,
26
+ "accuracy@5": 0.771859296482412,
27
+ "accuracy@10": 0.8180904522613065,
28
+ "ndcg@10": 0.6737125432901869,
29
+ "mrr@10": 0.626774347930127
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.5115346038114343,
35
+ "accuracy@3": 0.7211634904714143,
36
+ "accuracy@5": 0.7713139418254764,
37
+ "accuracy@10": 0.8284854563691073,
38
+ "ndcg@10": 0.6756415397851852,
39
+ "mrr@10": 0.6259448981866229
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.3799830327521453,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_score",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.2510775862068966,
9
+ "accuracy@3": 0.43426724137931033,
10
+ "accuracy@5": 0.509698275862069,
11
+ "accuracy@10": 0.6099137931034483,
12
+ "ndcg@10": 0.4218713386689512,
13
+ "mrr@10": 0.3627116687192117
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.2543103448275862,
17
+ "accuracy@3": 0.4353448275862069,
18
+ "accuracy@5": 0.5129310344827587,
19
+ "accuracy@10": 0.6088362068965517,
20
+ "ndcg@10": 0.4233839243705678,
21
+ "mrr@10": 0.36503018951833593
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.2510775862068966,
25
+ "accuracy@3": 0.43211206896551724,
26
+ "accuracy@5": 0.5129310344827587,
27
+ "accuracy@10": 0.6109913793103449,
28
+ "ndcg@10": 0.4220794997894996,
29
+ "mrr@10": 0.36269199849480005
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_score": {
34
+ "accuracy@1": 0.24583333333333332,
35
+ "accuracy@3": 0.42083333333333334,
36
+ "accuracy@5": 0.5027777777777778,
37
+ "accuracy@10": 0.6,
38
+ "ndcg@10": 0.3799830327521453,
39
+ "mrr@10": 0.3540084876543211
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9312903487668528,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.94,
9
+ "accuracy@3": 0.96,
10
+ "accuracy@5": 0.98,
11
+ "accuracy@10": 0.98,
12
+ "ndcg@10": 0.9607938887245083,
13
+ "mrr@10": 0.9545
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.94,
17
+ "accuracy@3": 0.96,
18
+ "accuracy@5": 0.98,
19
+ "accuracy@10": 0.98,
20
+ "ndcg@10": 0.9607938887245083,
21
+ "mrr@10": 0.9545
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.94,
25
+ "accuracy@3": 0.96,
26
+ "accuracy@5": 0.98,
27
+ "accuracy@10": 0.98,
28
+ "ndcg@10": 0.9599228286971825,
29
+ "mrr@10": 0.9533333333333333
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.8737623762376238,
35
+ "accuracy@3": 0.948019801980198,
36
+ "accuracy@5": 0.9678217821782178,
37
+ "accuracy@10": 0.9876237623762376,
38
+ "ndcg@10": 0.9312903487668528,
39
+ "mrr@10": 0.9131109539525379
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9683680126122469,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_score",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.92,
9
+ "accuracy@3": 0.98,
10
+ "accuracy@5": 0.99,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.964415325130387,
13
+ "mrr@10": 0.9525
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.92,
17
+ "accuracy@3": 0.99,
18
+ "accuracy@5": 0.99,
19
+ "accuracy@10": 1.0,
20
+ "ndcg@10": 0.9651085595496531,
21
+ "mrr@10": 0.9533333333333333
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.92,
25
+ "accuracy@3": 0.98,
26
+ "accuracy@5": 0.99,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 0.9631060275946723,
29
+ "mrr@10": 0.9508333333333333
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_score": {
34
+ "accuracy@1": 0.9381188118811881,
35
+ "accuracy@3": 0.9826732673267327,
36
+ "accuracy@5": 0.9876237623762376,
37
+ "accuracy@10": 0.9925742574257426,
38
+ "ndcg@10": 0.9683680126122469,
39
+ "mrr@10": 0.960258525852585
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.8408362653388072,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_score",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.83,
9
+ "accuracy@3": 0.91,
10
+ "accuracy@5": 0.94,
11
+ "accuracy@10": 0.99,
12
+ "ndcg@10": 0.9046856604073044,
13
+ "mrr@10": 0.8780952380952379
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.83,
17
+ "accuracy@3": 0.91,
18
+ "accuracy@5": 0.94,
19
+ "accuracy@10": 0.99,
20
+ "ndcg@10": 0.9053025824811691,
21
+ "mrr@10": 0.8787738095238095
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.83,
25
+ "accuracy@3": 0.91,
26
+ "accuracy@5": 0.94,
27
+ "accuracy@10": 0.99,
28
+ "ndcg@10": 0.9041030740876984,
29
+ "mrr@10": 0.8774563492063492
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_score": {
34
+ "accuracy@1": 0.7351485148514851,
35
+ "accuracy@3": 0.8613861386138614,
36
+ "accuracy@5": 0.9108910891089109,
37
+ "accuracy@10": 0.943069306930693,
38
+ "ndcg@10": 0.8408362653388072,
39
+ "mrr@10": 0.8077675624705328
40
+ }
41
+ }
42
+ }
43
+ }
jmteb/results/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.743657520470515,
4
+ "details": {
5
+ "optimal_similarity_metric": "dot_score",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.7957368400871296,
9
+ "spearman": 0.762797232405231
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.7896085210418337,
13
+ "spearman": 0.7623109878831168
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.7896085210418337,
17
+ "spearman": 0.7623109878831168
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.7957067931754913,
21
+ "spearman": 0.7628188190178943
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "dot_score": {
26
+ "pearson": 0.7800093069496337,
27
+ "spearman": 0.743657520470515
28
+ }
29
+ }
30
+ }
31
+ }
jmteb/results/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8428310988577061,
4
+ "details": {
5
+ "optimal_similarity_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8663617486013027,
9
+ "spearman": 0.8264545526446698
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.8624142417397704,
13
+ "spearman": 0.8263746662985753
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.8624142417397704,
17
+ "spearman": 0.8263746662985753
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.8663097123455762,
21
+ "spearman": 0.8263795191808255
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "cosine_similarity": {
26
+ "pearson": 0.8833575064948627,
27
+ "spearman": 0.8428310988577061
28
+ }
29
+ }
30
+ }
31
+ }
jmteb/results/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.7690321272929969
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.5998172978417656
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.8153216318848042
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.9014240422977099
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9354186207520728
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7281126791454011
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.6756415397851852
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.3799830327521453
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.9312903487668528
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9683680126122469
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.8408362653388072
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.743657520470515
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8428310988577061
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.513545352498706
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.46097799248263915
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6097337006427915
60
+ }
61
+ }
62
+ }
jmteb/tasks/amazon_counterfactual_classification.jsonnet ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ amazon_counterfactual_classification: {
3
+ class_path: 'ClassificationEvaluator',
4
+ init_args: {
5
+ train_dataset: {
6
+ class_path: 'HfClassificationDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'train',
10
+ name: 'amazon_counterfactual_classification',
11
+ },
12
+ },
13
+ val_dataset: {
14
+ class_path: 'HfClassificationDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'validation',
18
+ name: 'amazon_counterfactual_classification',
19
+ },
20
+ },
21
+ test_dataset: {
22
+ class_path: 'HfClassificationDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'test',
26
+ name: 'amazon_counterfactual_classification',
27
+ },
28
+ },
29
+ prefix: '同じクラスに属する文を探すために次の文を表現して\n',
30
+ },
31
+ },
32
+ }
jmteb/tasks/amazon_review_classification.jsonnet ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ amazon_review_classification: {
3
+ class_path: 'ClassificationEvaluator',
4
+ init_args: {
5
+ train_dataset: {
6
+ class_path: 'HfClassificationDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'train',
10
+ name: 'amazon_review_classification',
11
+ },
12
+ },
13
+ val_dataset: {
14
+ class_path: 'HfClassificationDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'validation',
18
+ name: 'amazon_review_classification',
19
+ },
20
+ },
21
+ test_dataset: {
22
+ class_path: 'HfClassificationDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'test',
26
+ name: 'amazon_review_classification',
27
+ },
28
+ },
29
+ prefix: '同じクラスに属する文を探すために次の文を表現して\n',
30
+ },
31
+ },
32
+ }
jmteb/tasks/esci.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ esci: {
3
+ class_path: 'RerankingEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRerankingQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'esci-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRerankingQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'esci-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRerankingDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'esci-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/jagovfaqs_22k.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ jagovfaqs_22k: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'jagovfaqs_22k-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'jagovfaqs_22k-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'jagovfaqs_22k-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/jaqket.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ jaqket: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'jaqket-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'jaqket-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'jaqket-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/jsick.jsonnet ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ jsick: {
3
+ class_path: 'STSEvaluator',
4
+ init_args: {
5
+ val_dataset: {
6
+ class_path: 'HfSTSDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'jsick',
11
+ },
12
+ },
13
+ test_dataset: {
14
+ class_path: 'HfSTSDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'jsick',
19
+ },
20
+ },
21
+ sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
22
+ sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
23
+ },
24
+ },
25
+ }
jmteb/tasks/jsts.jsonnet ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ jsts: {
3
+ class_path: 'STSEvaluator',
4
+ init_args: {
5
+ val_dataset: {
6
+ class_path: 'HfSTSDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'train',
10
+ name: 'jsts',
11
+ },
12
+ },
13
+ test_dataset: {
14
+ class_path: 'HfSTSDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'jsts',
19
+ },
20
+ },
21
+ sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
22
+ sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
23
+ },
24
+ },
25
+ }
jmteb/tasks/livedoor_news.jsonnet ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ livedoor_news: {
3
+ class_path: 'ClusteringEvaluator',
4
+ init_args: {
5
+ val_dataset: {
6
+ class_path: 'HfClusteringDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'livedoor_news',
11
+ },
12
+ },
13
+ test_dataset: {
14
+ class_path: 'HfClusteringDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'livedoor_news',
19
+ },
20
+ },
21
+ prefix: '類似した文を探すために次の文を表現して\n',
22
+ },
23
+ },
24
+ }
jmteb/tasks/massive_intent_classification.jsonnet ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ massive_intent_classification: {
3
+ class_path: 'ClassificationEvaluator',
4
+ init_args: {
5
+ train_dataset: {
6
+ class_path: 'HfClassificationDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'train',
10
+ name: 'massive_intent_classification',
11
+ },
12
+ },
13
+ val_dataset: {
14
+ class_path: 'HfClassificationDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'validation',
18
+ name: 'massive_intent_classification',
19
+ },
20
+ },
21
+ test_dataset: {
22
+ class_path: 'HfClassificationDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'test',
26
+ name: 'massive_intent_classification',
27
+ },
28
+ },
29
+ prefix: '同じクラスに属する文を探すために次の文を表現して\n',
30
+ },
31
+ },
32
+ }
jmteb/tasks/massive_scenario_classification.jsonnet ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ massive_scenario_classification: {
3
+ class_path: 'ClassificationEvaluator',
4
+ init_args: {
5
+ train_dataset: {
6
+ class_path: 'HfClassificationDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'train',
10
+ name: 'massive_scenario_classification',
11
+ },
12
+ },
13
+ val_dataset: {
14
+ class_path: 'HfClassificationDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'validation',
18
+ name: 'massive_scenario_classification',
19
+ },
20
+ },
21
+ test_dataset: {
22
+ class_path: 'HfClassificationDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'test',
26
+ name: 'massive_scenario_classification',
27
+ },
28
+ },
29
+ prefix: '同じクラスに属する文を探すために次の文を表現して\n',
30
+ },
31
+ },
32
+ }
jmteb/tasks/mewsc16.jsonnet ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ mewsc16: {
3
+ class_path: 'ClusteringEvaluator',
4
+ init_args: {
5
+ val_dataset: {
6
+ class_path: 'HfClusteringDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'mewsc16_ja',
11
+ },
12
+ },
13
+ test_dataset: {
14
+ class_path: 'HfClusteringDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'mewsc16_ja',
19
+ },
20
+ },
21
+ prefix: '類似した文を探すために次の文を表現して\n',
22
+ },
23
+ },
24
+ }
jmteb/tasks/mrtydi.jsonnet ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ mrtydi: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'mrtydi-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'mrtydi-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'mrtydi-corpus',
27
+ },
28
+ },
29
+ "doc_chunk_size":10000,
30
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
31
+ doc_prefix: '次の文章を表現して\n',
32
+ },
33
+ },
34
+ }
jmteb/tasks/nlp_journal_abs_intro.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ nlp_journal_abs_intro: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'nlp_journal_abs_intro-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'nlp_journal_abs_intro-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'nlp_journal_abs_intro-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/nlp_journal_title_abs.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ nlp_journal_title_abs: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'nlp_journal_title_abs-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'nlp_journal_title_abs-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'nlp_journal_title_abs-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/nlp_journal_title_intro.jsonnet ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ nlp_journal_title_intro: {
3
+ class_path: 'RetrievalEvaluator',
4
+ init_args: {
5
+ val_query_dataset: {
6
+ class_path: 'HfRetrievalQueryDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'nlp_journal_title_intro-query',
11
+ },
12
+ },
13
+ test_query_dataset: {
14
+ class_path: 'HfRetrievalQueryDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'nlp_journal_title_intro-query',
19
+ },
20
+ },
21
+ doc_dataset: {
22
+ class_path: 'HfRetrievalDocDataset',
23
+ init_args: {
24
+ path: 'sbintuitions/JMTEB',
25
+ split: 'corpus',
26
+ name: 'nlp_journal_title_intro-corpus',
27
+ },
28
+ },
29
+ query_prefix: '関連した文書を探すために次の文を表現して\n',
30
+ doc_prefix: '次の文章を表現して\n',
31
+ },
32
+ },
33
+ }
jmteb/tasks/paws_x_ja.jsonnet ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ paws_x_ja: {
3
+ class_path: 'PairClassificationEvaluator',
4
+ init_args: {
5
+ val_dataset: {
6
+ class_path: 'HfPairClassificationDataset',
7
+ init_args: {
8
+ path: 'sbintuitions/JMTEB',
9
+ split: 'validation',
10
+ name: 'paws_x_ja',
11
+ },
12
+ },
13
+ test_dataset: {
14
+ class_path: 'HfPairClassificationDataset',
15
+ init_args: {
16
+ path: 'sbintuitions/JMTEB',
17
+ split: 'test',
18
+ name: 'paws_x_ja',
19
+ },
20
+ },
21
+ sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
22
+ sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
23
+ },
24
+ },
25
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bba8db1bb981e84c4c056423407063f9b3c83bf4e9569598c1428c2a5b6c167a
3
+ size 629238896
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
mteb/models/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from .default import PROMPT as default_prompt
2
+ from .retrieva import PROMPT as retrieva_prompt
3
+ from .retrieva_en import PROMPT as retrieva_en_prompt
4
+
5
+
6
+ PROMPTS = {
7
+ "default": default_prompt,
8
+ "retrieva": retrieva_prompt,
9
+ "retrieva-en": retrieva_en_prompt,
10
+ }
mteb/models/default.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ PROMPT = {
2
+ "query": "query: ",
3
+ "passage": "passage: ",
4
+ }
mteb/models/retrieva.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PROMPT = {
2
+ "STS": "同じ意味の文を探すために次の文を表現して\n",
3
+ "Summarization": "次の記事またはタイトルを表現して\n",
4
+ "BitextMining": "次の文を表現して\n",
5
+ "Classification": "同じクラスに属する文を探すために次の文を表現して\n",
6
+ "Clustering": "類似した文を探すために次の文を表現して\n",
7
+ "Reranking-query": "関連した文書を探すために次の文を表現して\n",
8
+ "Reranking-passage": "次の文章を表現して\n",
9
+ "Retrieval-query": "関連した文書を探すために次の文を表現して\n",
10
+ "Retrieval-passage": "次の文章を表現して\n",
11
+ "InstructionRetrieval": "",
12
+ "PairClassification": "同じ意味の文を探すために次の文を表現して\n",
13
+ }
mteb/models/retrieva_en.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PROMPT = {
2
+ "STS": "Represent the sentence for retrieving duplicate sentences:\n",
3
+ "Summarization": "Represent the news article or news title for retrieval:\n",
4
+ "BitextMining": "Represent the sentence\n",
5
+ "Classification": "Represent the sentence for retrieving the sentence belonging to the same category:\n",
6
+ "Clustering": "Represent the sentence to find similar sentences:\n",
7
+ "Reranking-query": "Represent the question:\n",
8
+ "Reranking-passage": "Represent the following text:\n",
9
+ "Retrieval-query": "Represent the question:\n",
10
+ "Retrieval-passage": "Represent the following text:\n",
11
+ "InstructionRetrieval": "Retrieve text based on user query:\n",
12
+ "PairClassification": "Represent the sentence for retrieving duplicate sentences:\n",
13
+ "MultilabelClassification": "Represent the sentence for retrieving the sentence belonging to the same category:\n",
14
+ "Speed": "",
15
+ }
mteb/mteb_eval.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Evaluate AMBER models"""
2
+
3
+ import argparse
4
+
5
+ import mteb
6
+
7
+ from models import PROMPTS
8
+
9
+ BENCHMARKS = {
10
+ "en": "MTEB(eng, v2)",
11
+ "ja": "MTEB(jpn, v1)",
12
+ }
13
+
14
+
15
+ def get_args() -> argparse.Namespace:
16
+ parser = argparse.ArgumentParser()
17
+ parser.add_argument("--model_type", type=str, required=True, help="Model name", choices=PROMPTS.keys())
18
+ parser.add_argument("--model_name_or_path", type=str, required=True)
19
+ parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
20
+ parser.add_argument("--output_dir", type=str, required=True, help="Output directory")
21
+ parser.add_argument("--benchmark", type=str, required=True, choices=BENCHMARKS.keys())
22
+ parser.add_argument("--corpus_chunk_size", type=int, default=50000)
23
+ parser.add_argument("--convert_to_tensor", action="store_true")
24
+ return parser.parse_args()
25
+
26
+
27
+ def main():
28
+ args = get_args()
29
+ prompt = PROMPTS[args.model_type]
30
+ model = mteb.get_model(args.model_name_or_path, model_prompts=prompt)
31
+
32
+ tasks = mteb.get_benchmark(BENCHMARKS[args.benchmark])
33
+ evaluation = mteb.MTEB(tasks=tasks)
34
+
35
+ encode_kwargs = {
36
+ "batch_size": args.batch_size,
37
+ "convert_to_tensor": args.convert_to_tensor,
38
+ }
39
+
40
+ evaluation.run(
41
+ model,
42
+ output_folder=args.output_dir,
43
+ encode_kwargs=encode_kwargs,
44
+ corpus_chunk_size=args.corpus_chunk_size,
45
+ )
46
+
47
+
48
+ if __name__ == "__main__":
49
+ main()
mteb/results/AmazonCounterfactualClassification.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "e8379541af4e31359cca9fbcf4b00f2671dba205",
3
+ "task_name": "AmazonCounterfactualClassification",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "accuracy": 0.733433,
9
+ "f1": 0.672899,
10
+ "f1_weighted": 0.757948,
11
+ "ap": 0.36123,
12
+ "ap_weighted": 0.36123,
13
+ "scores_per_experiment": [
14
+ {
15
+ "accuracy": 0.743284,
16
+ "f1": 0.687055,
17
+ "f1_weighted": 0.767834,
18
+ "ap": 0.378554,
19
+ "ap_weighted": 0.378554
20
+ },
21
+ {
22
+ "accuracy": 0.768657,
23
+ "f1": 0.709178,
24
+ "f1_weighted": 0.789268,
25
+ "ap": 0.40075,
26
+ "ap_weighted": 0.40075
27
+ },
28
+ {
29
+ "accuracy": 0.635821,
30
+ "f1": 0.59181,
31
+ "f1_weighted": 0.67343,
32
+ "ap": 0.295662,
33
+ "ap_weighted": 0.295662
34
+ },
35
+ {
36
+ "accuracy": 0.729851,
37
+ "f1": 0.67607,
38
+ "f1_weighted": 0.756446,
39
+ "ap": 0.369058,
40
+ "ap_weighted": 0.369058
41
+ },
42
+ {
43
+ "accuracy": 0.741791,
44
+ "f1": 0.678645,
45
+ "f1_weighted": 0.765391,
46
+ "ap": 0.361706,
47
+ "ap_weighted": 0.361706
48
+ },
49
+ {
50
+ "accuracy": 0.731343,
51
+ "f1": 0.662842,
52
+ "f1_weighted": 0.755387,
53
+ "ap": 0.339825,
54
+ "ap_weighted": 0.339825
55
+ },
56
+ {
57
+ "accuracy": 0.81791,
58
+ "f1": 0.745149,
59
+ "f1_weighted": 0.828073,
60
+ "ap": 0.434356,
61
+ "ap_weighted": 0.434356
62
+ },
63
+ {
64
+ "accuracy": 0.783582,
65
+ "f1": 0.715912,
66
+ "f1_weighted": 0.800345,
67
+ "ap": 0.400671,
68
+ "ap_weighted": 0.400671
69
+ },
70
+ {
71
+ "accuracy": 0.698507,
72
+ "f1": 0.637958,
73
+ "f1_weighted": 0.728119,
74
+ "ap": 0.321782,
75
+ "ap_weighted": 0.321782
76
+ },
77
+ {
78
+ "accuracy": 0.683582,
79
+ "f1": 0.624376,
80
+ "f1_weighted": 0.715188,
81
+ "ap": 0.309935,
82
+ "ap_weighted": 0.309935
83
+ }
84
+ ],
85
+ "main_score": 0.733433,
86
+ "hf_subset": "en",
87
+ "languages": [
88
+ "eng-Latn"
89
+ ]
90
+ }
91
+ ]
92
+ },
93
+ "evaluation_time": 12.824249505996704,
94
+ "kg_co2_emissions": null
95
+ }
mteb/results/ArXivHierarchicalClusteringP2P.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "0bbdb47bcbe3a90093699aefeed338a0f28a7ee8",
3
+ "task_name": "ArXivHierarchicalClusteringP2P",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "v_measures": {
9
+ "Level 0": [
10
+ 0.531687,
11
+ 0.515416,
12
+ 0.534512,
13
+ 0.516432,
14
+ 0.485335,
15
+ 0.491114,
16
+ 0.452959,
17
+ 0.509849,
18
+ 0.474611,
19
+ 0.47921
20
+ ],
21
+ "Level 1": [
22
+ 0.57501,
23
+ 0.561921,
24
+ 0.57618,
25
+ 0.565423,
26
+ 0.581718,
27
+ 0.556907,
28
+ 0.557507,
29
+ 0.569016,
30
+ 0.559128,
31
+ 0.584777
32
+ ]
33
+ },
34
+ "v_measure": 0.533936,
35
+ "v_measure_std": 0.039727,
36
+ "main_score": 0.533936,
37
+ "hf_subset": "default",
38
+ "languages": [
39
+ "eng-Latn"
40
+ ]
41
+ }
42
+ ]
43
+ },
44
+ "evaluation_time": 7.786345720291138,
45
+ "kg_co2_emissions": null
46
+ }
mteb/results/ArXivHierarchicalClusteringS2S.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3",
3
+ "task_name": "ArXivHierarchicalClusteringS2S",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "v_measures": {
9
+ "Level 0": [
10
+ 0.447898,
11
+ 0.479182,
12
+ 0.446903,
13
+ 0.457972,
14
+ 0.443715,
15
+ 0.488723,
16
+ 0.479857,
17
+ 0.492344,
18
+ 0.471878,
19
+ 0.458149
20
+ ],
21
+ "Level 1": [
22
+ 0.55827,
23
+ 0.55466,
24
+ 0.567894,
25
+ 0.586775,
26
+ 0.541746,
27
+ 0.576662,
28
+ 0.574423,
29
+ 0.552522,
30
+ 0.536173,
31
+ 0.556257
32
+ ]
33
+ },
34
+ "v_measure": 0.5136,
35
+ "v_measure_std": 0.049623,
36
+ "main_score": 0.5136,
37
+ "hf_subset": "default",
38
+ "languages": [
39
+ "eng-Latn"
40
+ ]
41
+ }
42
+ ]
43
+ },
44
+ "evaluation_time": 6.605703115463257,
45
+ "kg_co2_emissions": null
46
+ }
mteb/results/ArguAna.json ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a",
3
+ "task_name": "ArguAna",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "ndcg_at_1": 0.26743,
9
+ "ndcg_at_3": 0.40551,
10
+ "ndcg_at_5": 0.4555,
11
+ "ndcg_at_10": 0.51317,
12
+ "ndcg_at_20": 0.53963,
13
+ "ndcg_at_100": 0.55358,
14
+ "ndcg_at_1000": 0.55596,
15
+ "map_at_1": 0.26743,
16
+ "map_at_3": 0.37162,
17
+ "map_at_5": 0.39964,
18
+ "map_at_10": 0.42355,
19
+ "map_at_20": 0.431,
20
+ "map_at_100": 0.43313,
21
+ "map_at_1000": 0.43323,
22
+ "recall_at_1": 0.26743,
23
+ "recall_at_3": 0.50356,
24
+ "recall_at_5": 0.62376,
25
+ "recall_at_10": 0.80156,
26
+ "recall_at_20": 0.90469,
27
+ "recall_at_100": 0.97724,
28
+ "recall_at_1000": 0.99502,
29
+ "precision_at_1": 0.26743,
30
+ "precision_at_3": 0.16785,
31
+ "precision_at_5": 0.12475,
32
+ "precision_at_10": 0.08016,
33
+ "precision_at_20": 0.04523,
34
+ "precision_at_100": 0.00977,
35
+ "precision_at_1000": 0.001,
36
+ "mrr_at_1": 0.271693,
37
+ "mrr_at_3": 0.374111,
38
+ "mrr_at_5": 0.401102,
39
+ "mrr_at_10": 0.424939,
40
+ "mrr_at_20": 0.432491,
41
+ "mrr_at_100": 0.434578,
42
+ "mrr_at_1000": 0.434685,
43
+ "nauc_ndcg_at_1_max": -0.062333,
44
+ "nauc_ndcg_at_1_std": -0.079555,
45
+ "nauc_ndcg_at_1_diff1": 0.14512,
46
+ "nauc_ndcg_at_3_max": -0.021476,
47
+ "nauc_ndcg_at_3_std": -0.058094,
48
+ "nauc_ndcg_at_3_diff1": 0.09136,
49
+ "nauc_ndcg_at_5_max": -0.017068,
50
+ "nauc_ndcg_at_5_std": -0.050188,
51
+ "nauc_ndcg_at_5_diff1": 0.094328,
52
+ "nauc_ndcg_at_10_max": 0.007445,
53
+ "nauc_ndcg_at_10_std": -0.035482,
54
+ "nauc_ndcg_at_10_diff1": 0.111,
55
+ "nauc_ndcg_at_20_max": 0.00472,
56
+ "nauc_ndcg_at_20_std": -0.033913,
57
+ "nauc_ndcg_at_20_diff1": 0.112196,
58
+ "nauc_ndcg_at_100_max": -0.011079,
59
+ "nauc_ndcg_at_100_std": -0.038187,
60
+ "nauc_ndcg_at_100_diff1": 0.109808,
61
+ "nauc_ndcg_at_1000_max": -0.013786,
62
+ "nauc_ndcg_at_1000_std": -0.043135,
63
+ "nauc_ndcg_at_1000_diff1": 0.109463,
64
+ "nauc_map_at_1_max": -0.062333,
65
+ "nauc_map_at_1_std": -0.079555,
66
+ "nauc_map_at_1_diff1": 0.14512,
67
+ "nauc_map_at_3_max": -0.033212,
68
+ "nauc_map_at_3_std": -0.062437,
69
+ "nauc_map_at_3_diff1": 0.101283,
70
+ "nauc_map_at_5_max": -0.030931,
71
+ "nauc_map_at_5_std": -0.057626,
72
+ "nauc_map_at_5_diff1": 0.103327,
73
+ "nauc_map_at_10_max": -0.022469,
74
+ "nauc_map_at_10_std": -0.052611,
75
+ "nauc_map_at_10_diff1": 0.110171,
76
+ "nauc_map_at_20_max": -0.02358,
77
+ "nauc_map_at_20_std": -0.05255,
78
+ "nauc_map_at_20_diff1": 0.110437,
79
+ "nauc_map_at_100_max": -0.025533,
80
+ "nauc_map_at_100_std": -0.052893,
81
+ "nauc_map_at_100_diff1": 0.110186,
82
+ "nauc_map_at_1000_max": -0.025621,
83
+ "nauc_map_at_1000_std": -0.053072,
84
+ "nauc_map_at_1000_diff1": 0.110196,
85
+ "nauc_recall_at_1_max": -0.062333,
86
+ "nauc_recall_at_1_std": -0.079555,
87
+ "nauc_recall_at_1_diff1": 0.14512,
88
+ "nauc_recall_at_3_max": 0.012414,
89
+ "nauc_recall_at_3_std": -0.046148,
90
+ "nauc_recall_at_3_diff1": 0.0645,
91
+ "nauc_recall_at_5_max": 0.027998,
92
+ "nauc_recall_at_5_std": -0.026652,
93
+ "nauc_recall_at_5_diff1": 0.067526,
94
+ "nauc_recall_at_10_max": 0.173221,
95
+ "nauc_recall_at_10_std": 0.059032,
96
+ "nauc_recall_at_10_diff1": 0.128819,
97
+ "nauc_recall_at_20_max": 0.296782,
98
+ "nauc_recall_at_20_std": 0.164192,
99
+ "nauc_recall_at_20_diff1": 0.158604,
100
+ "nauc_recall_at_100_max": 0.287726,
101
+ "nauc_recall_at_100_std": 0.487738,
102
+ "nauc_recall_at_100_diff1": 0.158629,
103
+ "nauc_recall_at_1000_max": 0.310293,
104
+ "nauc_recall_at_1000_std": 0.527185,
105
+ "nauc_recall_at_1000_diff1": 0.143646,
106
+ "nauc_precision_at_1_max": -0.062333,
107
+ "nauc_precision_at_1_std": -0.079555,
108
+ "nauc_precision_at_1_diff1": 0.14512,
109
+ "nauc_precision_at_3_max": 0.012414,
110
+ "nauc_precision_at_3_std": -0.046148,
111
+ "nauc_precision_at_3_diff1": 0.0645,
112
+ "nauc_precision_at_5_max": 0.027998,
113
+ "nauc_precision_at_5_std": -0.026652,
114
+ "nauc_precision_at_5_diff1": 0.067526,
115
+ "nauc_precision_at_10_max": 0.173221,
116
+ "nauc_precision_at_10_std": 0.059032,
117
+ "nauc_precision_at_10_diff1": 0.128819,
118
+ "nauc_precision_at_20_max": 0.296782,
119
+ "nauc_precision_at_20_std": 0.164192,
120
+ "nauc_precision_at_20_diff1": 0.158604,
121
+ "nauc_precision_at_100_max": 0.287726,
122
+ "nauc_precision_at_100_std": 0.487738,
123
+ "nauc_precision_at_100_diff1": 0.158629,
124
+ "nauc_precision_at_1000_max": 0.310293,
125
+ "nauc_precision_at_1000_std": 0.527185,
126
+ "nauc_precision_at_1000_diff1": 0.143646,
127
+ "nauc_mrr_at_1_max": -0.060675,
128
+ "nauc_mrr_at_1_std": -0.070284,
129
+ "nauc_mrr_at_1_diff1": 0.131112,
130
+ "nauc_mrr_at_3_max": -0.038593,
131
+ "nauc_mrr_at_3_std": -0.059281,
132
+ "nauc_mrr_at_3_diff1": 0.08807,
133
+ "nauc_mrr_at_5_max": -0.036333,
134
+ "nauc_mrr_at_5_std": -0.053817,
135
+ "nauc_mrr_at_5_diff1": 0.090466,
136
+ "nauc_mrr_at_10_max": -0.028869,
137
+ "nauc_mrr_at_10_std": -0.049811,
138
+ "nauc_mrr_at_10_diff1": 0.095897,
139
+ "nauc_mrr_at_20_max": -0.029609,
140
+ "nauc_mrr_at_20_std": -0.049429,
141
+ "nauc_mrr_at_20_diff1": 0.096326,
142
+ "nauc_mrr_at_100_max": -0.0315,
143
+ "nauc_mrr_at_100_std": -0.049643,
144
+ "nauc_mrr_at_100_diff1": 0.096056,
145
+ "nauc_mrr_at_1000_max": -0.03159,
146
+ "nauc_mrr_at_1000_std": -0.04982,
147
+ "nauc_mrr_at_1000_diff1": 0.096061,
148
+ "main_score": 0.51317,
149
+ "hf_subset": "default",
150
+ "languages": [
151
+ "eng-Latn"
152
+ ]
153
+ }
154
+ ]
155
+ },
156
+ "evaluation_time": 51.13386678695679,
157
+ "kg_co2_emissions": null
158
+ }
mteb/results/AskUbuntuDupQuestions.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "2000358ca161889fa9c082cb41daa8dcfb161a54",
3
+ "task_name": "AskUbuntuDupQuestions",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "map": 0.580233,
9
+ "mrr": 0.705882,
10
+ "nAUC_map_max": 0.208533,
11
+ "nAUC_map_std": 0.126123,
12
+ "nAUC_map_diff1": 0.013859,
13
+ "nAUC_mrr_max": 0.33692,
14
+ "nAUC_mrr_std": 0.141764,
15
+ "nAUC_mrr_diff1": 0.142379,
16
+ "main_score": 0.580233,
17
+ "hf_subset": "default",
18
+ "languages": [
19
+ "eng-Latn"
20
+ ]
21
+ }
22
+ ]
23
+ },
24
+ "evaluation_time": 4.280848503112793,
25
+ "kg_co2_emissions": null
26
+ }
mteb/results/BIOSSES.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a",
3
+ "task_name": "BIOSSES",
4
+ "mteb_version": "1.36.1",
5
+ "scores": {
6
+ "test": [
7
+ {
8
+ "pearson": 0.834314,
9
+ "spearman": 0.787367,
10
+ "cosine_pearson": 0.834314,
11
+ "cosine_spearman": 0.787367,
12
+ "manhattan_pearson": 0.821388,
13
+ "manhattan_spearman": 0.78747,
14
+ "euclidean_pearson": 0.821716,
15
+ "euclidean_spearman": 0.787367,
16
+ "main_score": 0.787367,
17
+ "hf_subset": "default",
18
+ "languages": [
19
+ "eng-Latn"
20
+ ]
21
+ }
22
+ ]
23
+ },
24
+ "evaluation_time": 0.5205843448638916,
25
+ "kg_co2_emissions": null
26
+ }