Upload 92 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 1_Pooling/config.json +10 -0
- config.json +47 -0
- config_sentence_transformers.json +14 -0
- jmteb/jmteb.jsonnet +22 -0
- jmteb/results/Classification/scores_amazon_counterfactual_classification.json +23 -0
- jmteb/results/Classification/scores_amazon_review_classification.json +23 -0
- jmteb/results/Classification/scores_massive_intent_classification.json +23 -0
- jmteb/results/Classification/scores_massive_scenario_classification.json +23 -0
- jmteb/results/Clustering/scores_livedoor_news.json +36 -0
- jmteb/results/Clustering/scores_mewsc16.json +36 -0
- jmteb/results/PairClassification/scores_paws_x_ja.json +41 -0
- jmteb/results/Reranking/scores_esci.json +31 -0
- jmteb/results/Retrieval/scores_jagovfaqs_22k.json +43 -0
- jmteb/results/Retrieval/scores_jaqket.json +43 -0
- jmteb/results/Retrieval/scores_mrtydi.json +43 -0
- jmteb/results/Retrieval/scores_nlp_journal_abs_intro.json +43 -0
- jmteb/results/Retrieval/scores_nlp_journal_title_abs.json +43 -0
- jmteb/results/Retrieval/scores_nlp_journal_title_intro.json +43 -0
- jmteb/results/STS/scores_jsick.json +31 -0
- jmteb/results/STS/scores_jsts.json +31 -0
- jmteb/results/summary.json +62 -0
- jmteb/tasks/amazon_counterfactual_classification.jsonnet +32 -0
- jmteb/tasks/amazon_review_classification.jsonnet +32 -0
- jmteb/tasks/esci.jsonnet +33 -0
- jmteb/tasks/jagovfaqs_22k.jsonnet +33 -0
- jmteb/tasks/jaqket.jsonnet +33 -0
- jmteb/tasks/jsick.jsonnet +25 -0
- jmteb/tasks/jsts.jsonnet +25 -0
- jmteb/tasks/livedoor_news.jsonnet +24 -0
- jmteb/tasks/massive_intent_classification.jsonnet +32 -0
- jmteb/tasks/massive_scenario_classification.jsonnet +32 -0
- jmteb/tasks/mewsc16.jsonnet +24 -0
- jmteb/tasks/mrtydi.jsonnet +34 -0
- jmteb/tasks/nlp_journal_abs_intro.jsonnet +33 -0
- jmteb/tasks/nlp_journal_title_abs.jsonnet +33 -0
- jmteb/tasks/nlp_journal_title_intro.jsonnet +33 -0
- jmteb/tasks/paws_x_ja.jsonnet +25 -0
- model.safetensors +3 -0
- modules.json +20 -0
- mteb/models/__init__.py +10 -0
- mteb/models/default.py +4 -0
- mteb/models/retrieva.py +13 -0
- mteb/models/retrieva_en.py +15 -0
- mteb/mteb_eval.py +49 -0
- mteb/results/AmazonCounterfactualClassification.json +95 -0
- mteb/results/ArXivHierarchicalClusteringP2P.json +46 -0
- mteb/results/ArXivHierarchicalClusteringS2S.json +46 -0
- mteb/results/ArguAna.json +158 -0
- mteb/results/AskUbuntuDupQuestions.json +26 -0
- mteb/results/BIOSSES.json +26 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sbintuitions/modernbert-ja-310m",
|
3 |
+
"architectures": [
|
4 |
+
"ModernBertModel"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"classifier_activation": "gelu",
|
10 |
+
"classifier_bias": false,
|
11 |
+
"classifier_dropout": 0.0,
|
12 |
+
"classifier_pooling": "cls",
|
13 |
+
"cls_token_id": 6,
|
14 |
+
"decoder_bias": true,
|
15 |
+
"deterministic_flash_attn": false,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"eos_token_id": 2,
|
18 |
+
"global_attn_every_n_layers": 3,
|
19 |
+
"global_rope_theta": 160000.0,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"hidden_activation": "gelu",
|
22 |
+
"hidden_size": 768,
|
23 |
+
"initializer_cutoff_factor": 2.0,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 3072,
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"local_attention": 128,
|
28 |
+
"local_rope_theta": 10000.0,
|
29 |
+
"max_position_embeddings": 8192,
|
30 |
+
"mlp_bias": false,
|
31 |
+
"mlp_dropout": 0.0,
|
32 |
+
"model_type": "modernbert",
|
33 |
+
"norm_bias": false,
|
34 |
+
"norm_eps": 1e-05,
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 25,
|
37 |
+
"pad_token_id": 3,
|
38 |
+
"position_embedding_type": "rope",
|
39 |
+
"reference_compile": false,
|
40 |
+
"repad_logits_with_grad": false,
|
41 |
+
"sep_token_id": 4,
|
42 |
+
"sparse_pred_ignore_index": -100,
|
43 |
+
"sparse_prediction": false,
|
44 |
+
"torch_dtype": "bfloat16",
|
45 |
+
"transformers_version": "4.49.0",
|
46 |
+
"vocab_size": 102400
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"Retrieval-query": "関連した文書を探すために次の文を表現して\n",
|
9 |
+
"Retrieval-passage": "次の文章を表現して\n",
|
10 |
+
"default": "同じ意味の文を探すために次の文を表現して\n"
|
11 |
+
},
|
12 |
+
"default_prompt_name": "default",
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
jmteb/jmteb.jsonnet
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Classification
|
2 |
+
(import './tasks/amazon_review_classification.jsonnet') +
|
3 |
+
(import './tasks/amazon_counterfactual_classification.jsonnet') +
|
4 |
+
(import './tasks/massive_intent_classification.jsonnet') +
|
5 |
+
(import './tasks/massive_scenario_classification.jsonnet') +
|
6 |
+
// Clustering
|
7 |
+
(import './tasks/livedoor_news.jsonnet') +
|
8 |
+
(import './tasks/mewsc16.jsonnet') +
|
9 |
+
// STS
|
10 |
+
(import './tasks/jsts.jsonnet') +
|
11 |
+
(import './tasks/jsick.jsonnet') +
|
12 |
+
// Pair Classification
|
13 |
+
(import './tasks/paws_x_ja.jsonnet') +
|
14 |
+
// Retrieval
|
15 |
+
(import './tasks/jagovfaqs_22k.jsonnet') +
|
16 |
+
(import './tasks/mrtydi.jsonnet') +
|
17 |
+
(import './tasks/jaqket.jsonnet') +
|
18 |
+
(import './tasks/nlp_journal_title_abs.jsonnet') +
|
19 |
+
(import './tasks/nlp_journal_title_intro.jsonnet') +
|
20 |
+
(import './tasks/nlp_journal_abs_intro.jsonnet') +
|
21 |
+
// Reranking
|
22 |
+
(import './tasks/esci.jsonnet')
|
jmteb/results/Classification/scores_amazon_counterfactual_classification.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "macro_f1",
|
3 |
+
"metric_value": 0.7690321272929969,
|
4 |
+
"details": {
|
5 |
+
"optimal_classifier_name": "logreg",
|
6 |
+
"val_scores": {
|
7 |
+
"knn_cosine_k_2": {
|
8 |
+
"accuracy": 0.907725321888412,
|
9 |
+
"macro_f1": 0.672212134596195
|
10 |
+
},
|
11 |
+
"logreg": {
|
12 |
+
"accuracy": 0.9313304721030042,
|
13 |
+
"macro_f1": 0.759173126614987
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"test_scores": {
|
17 |
+
"logreg": {
|
18 |
+
"accuracy": 0.9346895074946466,
|
19 |
+
"macro_f1": 0.7690321272929969
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
23 |
+
}
|
jmteb/results/Classification/scores_amazon_review_classification.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "macro_f1",
|
3 |
+
"metric_value": 0.5998172978417656,
|
4 |
+
"details": {
|
5 |
+
"optimal_classifier_name": "logreg",
|
6 |
+
"val_scores": {
|
7 |
+
"knn_cosine_k_2": {
|
8 |
+
"accuracy": 0.4392,
|
9 |
+
"macro_f1": 0.4293118582606878
|
10 |
+
},
|
11 |
+
"logreg": {
|
12 |
+
"accuracy": 0.5954,
|
13 |
+
"macro_f1": 0.5900254170486042
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"test_scores": {
|
17 |
+
"logreg": {
|
18 |
+
"accuracy": 0.6046,
|
19 |
+
"macro_f1": 0.5998172978417656
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
23 |
+
}
|
jmteb/results/Classification/scores_massive_intent_classification.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "macro_f1",
|
3 |
+
"metric_value": 0.8153216318848042,
|
4 |
+
"details": {
|
5 |
+
"optimal_classifier_name": "logreg",
|
6 |
+
"val_scores": {
|
7 |
+
"knn_cosine_k_2": {
|
8 |
+
"accuracy": 0.7998032464338416,
|
9 |
+
"macro_f1": 0.7840757781194604
|
10 |
+
},
|
11 |
+
"logreg": {
|
12 |
+
"accuracy": 0.8666994589276931,
|
13 |
+
"macro_f1": 0.8136832325973621
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"test_scores": {
|
17 |
+
"logreg": {
|
18 |
+
"accuracy": 0.8638197713517148,
|
19 |
+
"macro_f1": 0.8153216318848042
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
23 |
+
}
|
jmteb/results/Classification/scores_massive_scenario_classification.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "macro_f1",
|
3 |
+
"metric_value": 0.9014240422977099,
|
4 |
+
"details": {
|
5 |
+
"optimal_classifier_name": "logreg",
|
6 |
+
"val_scores": {
|
7 |
+
"knn_cosine_k_2": {
|
8 |
+
"accuracy": 0.8711264141662568,
|
9 |
+
"macro_f1": 0.8669048603927182
|
10 |
+
},
|
11 |
+
"logreg": {
|
12 |
+
"accuracy": 0.9011313330054107,
|
13 |
+
"macro_f1": 0.893877736725918
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"test_scores": {
|
17 |
+
"logreg": {
|
18 |
+
"accuracy": 0.9041694687289845,
|
19 |
+
"macro_f1": 0.9014240422977099
|
20 |
+
}
|
21 |
+
}
|
22 |
+
}
|
23 |
+
}
|
jmteb/results/Clustering/scores_livedoor_news.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "v_measure_score",
|
3 |
+
"metric_value": 0.513545352498706,
|
4 |
+
"details": {
|
5 |
+
"optimal_clustering_model_name": "MiniBatchKMeans",
|
6 |
+
"val_scores": {
|
7 |
+
"MiniBatchKMeans": {
|
8 |
+
"v_measure_score": 0.5140841329017503,
|
9 |
+
"homogeneity_score": 0.5052453627266255,
|
10 |
+
"completeness_score": 0.5232376606138658
|
11 |
+
},
|
12 |
+
"AgglomerativeClustering": {
|
13 |
+
"v_measure_score": 0.49350214308585105,
|
14 |
+
"homogeneity_score": 0.4873068478340836,
|
15 |
+
"completeness_score": 0.49985699253269256
|
16 |
+
},
|
17 |
+
"BisectingKMeans": {
|
18 |
+
"v_measure_score": 0.4843217444145435,
|
19 |
+
"homogeneity_score": 0.48227844059111663,
|
20 |
+
"completeness_score": 0.48638243593076996
|
21 |
+
},
|
22 |
+
"Birch": {
|
23 |
+
"v_measure_score": 0.5045054710151884,
|
24 |
+
"homogeneity_score": 0.5008173784727417,
|
25 |
+
"completeness_score": 0.5082482858481403
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"test_scores": {
|
29 |
+
"MiniBatchKMeans": {
|
30 |
+
"v_measure_score": 0.513545352498706,
|
31 |
+
"homogeneity_score": 0.5099866166637427,
|
32 |
+
"completeness_score": 0.5171541037503654
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
}
|
jmteb/results/Clustering/scores_mewsc16.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "v_measure_score",
|
3 |
+
"metric_value": 0.46097799248263915,
|
4 |
+
"details": {
|
5 |
+
"optimal_clustering_model_name": "AgglomerativeClustering",
|
6 |
+
"val_scores": {
|
7 |
+
"MiniBatchKMeans": {
|
8 |
+
"v_measure_score": 0.44916188797792883,
|
9 |
+
"homogeneity_score": 0.49147958259688423,
|
10 |
+
"completeness_score": 0.41355380899134786
|
11 |
+
},
|
12 |
+
"AgglomerativeClustering": {
|
13 |
+
"v_measure_score": 0.5246463072498976,
|
14 |
+
"homogeneity_score": 0.5663240673439284,
|
15 |
+
"completeness_score": 0.4886824631609394
|
16 |
+
},
|
17 |
+
"BisectingKMeans": {
|
18 |
+
"v_measure_score": 0.39737928507985054,
|
19 |
+
"homogeneity_score": 0.43737570574597956,
|
20 |
+
"completeness_score": 0.36408503061737185
|
21 |
+
},
|
22 |
+
"Birch": {
|
23 |
+
"v_measure_score": 0.5160631364820057,
|
24 |
+
"homogeneity_score": 0.5643018754693391,
|
25 |
+
"completeness_score": 0.4754221824714356
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"test_scores": {
|
29 |
+
"AgglomerativeClustering": {
|
30 |
+
"v_measure_score": 0.46097799248263915,
|
31 |
+
"homogeneity_score": 0.4967671593496861,
|
32 |
+
"completeness_score": 0.42999907535625936
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
}
|
jmteb/results/PairClassification/scores_paws_x_ja.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "binary_f1",
|
3 |
+
"metric_value": 0.6097337006427915,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "euclidean_distances",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_distances": {
|
8 |
+
"accuracy": 0.5725,
|
9 |
+
"accuracy_threshold": -0.05995553731918335,
|
10 |
+
"binary_f1": 0.5979670522257273,
|
11 |
+
"binary_f1_threshold": 1.0
|
12 |
+
},
|
13 |
+
"manhatten_distances": {
|
14 |
+
"accuracy": 0.648,
|
15 |
+
"accuracy_threshold": 6.833098888397217,
|
16 |
+
"binary_f1": 0.6174142480211082,
|
17 |
+
"binary_f1_threshold": 12.269868850708008
|
18 |
+
},
|
19 |
+
"euclidean_distances": {
|
20 |
+
"accuracy": 0.6465,
|
21 |
+
"accuracy_threshold": 0.3111177384853363,
|
22 |
+
"binary_f1": 0.6183574879227053,
|
23 |
+
"binary_f1_threshold": 0.564425528049469
|
24 |
+
},
|
25 |
+
"dot_similarities": {
|
26 |
+
"accuracy": 0.646,
|
27 |
+
"accuracy_threshold": 0.9595050811767578,
|
28 |
+
"binary_f1": 0.618229854689564,
|
29 |
+
"binary_f1_threshold": 0.8423429727554321
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"euclidean_distances": {
|
34 |
+
"accuracy": 0.615,
|
35 |
+
"accuracy_threshold": 0.3111177384853363,
|
36 |
+
"binary_f1": 0.6097337006427915,
|
37 |
+
"binary_f1_threshold": 0.564425528049469
|
38 |
+
}
|
39 |
+
}
|
40 |
+
}
|
41 |
+
}
|
jmteb/results/Reranking/scores_esci.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.9354186207520728,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "euclidean_distance",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"ndcg@10": 0.9477835725930323,
|
9 |
+
"ndcg@20": 0.9591879767306916,
|
10 |
+
"ndcg@40": 0.9667225066187783
|
11 |
+
},
|
12 |
+
"dot_score": {
|
13 |
+
"ndcg@10": 0.9476098413475649,
|
14 |
+
"ndcg@20": 0.9589807025526251,
|
15 |
+
"ndcg@40": 0.9665249592723859
|
16 |
+
},
|
17 |
+
"euclidean_distance": {
|
18 |
+
"ndcg@10": 0.9477934218097472,
|
19 |
+
"ndcg@20": 0.9591607950860748,
|
20 |
+
"ndcg@40": 0.9666650348508583
|
21 |
+
}
|
22 |
+
},
|
23 |
+
"test_scores": {
|
24 |
+
"euclidean_distance": {
|
25 |
+
"ndcg@10": 0.9354186207520728,
|
26 |
+
"ndcg@20": 0.9515087918879773,
|
27 |
+
"ndcg@40": 0.9603281546305616
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
jmteb/results/Retrieval/scores_jagovfaqs_22k.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.7281126791454011,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "euclidean_distance",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.5946183094472068,
|
9 |
+
"accuracy@3": 0.7657209710441649,
|
10 |
+
"accuracy@5": 0.8218777420298333,
|
11 |
+
"accuracy@10": 0.8724773325533782,
|
12 |
+
"ndcg@10": 0.7358693711267098,
|
13 |
+
"mrr@10": 0.6918434332883007
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.5937408599005557,
|
17 |
+
"accuracy@3": 0.7665984205908161,
|
18 |
+
"accuracy@5": 0.8215852588476162,
|
19 |
+
"accuracy@10": 0.8724773325533782,
|
20 |
+
"ndcg@10": 0.7357749849472581,
|
21 |
+
"mrr@10": 0.6917069411365993
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.5949107926294238,
|
25 |
+
"accuracy@3": 0.7642585551330798,
|
26 |
+
"accuracy@5": 0.8210002924831822,
|
27 |
+
"accuracy@10": 0.8736472652822462,
|
28 |
+
"ndcg@10": 0.7361924814420154,
|
29 |
+
"mrr@10": 0.6919672743817233
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"euclidean_distance": {
|
34 |
+
"accuracy@1": 0.591812865497076,
|
35 |
+
"accuracy@3": 0.7538011695906432,
|
36 |
+
"accuracy@5": 0.8114035087719298,
|
37 |
+
"accuracy@10": 0.8649122807017544,
|
38 |
+
"ndcg@10": 0.7281126791454011,
|
39 |
+
"mrr@10": 0.6842285110925452
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/Retrieval/scores_jaqket.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.6756415397851852,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "euclidean_distance",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.5145728643216081,
|
9 |
+
"accuracy@3": 0.7185929648241206,
|
10 |
+
"accuracy@5": 0.770854271356784,
|
11 |
+
"accuracy@10": 0.8190954773869347,
|
12 |
+
"ndcg@10": 0.6730166004888566,
|
13 |
+
"mrr@10": 0.6255224535375292
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.5125628140703518,
|
17 |
+
"accuracy@3": 0.7185929648241206,
|
18 |
+
"accuracy@5": 0.770854271356784,
|
19 |
+
"accuracy@10": 0.8190954773869347,
|
20 |
+
"ndcg@10": 0.6728020927265955,
|
21 |
+
"mrr@10": 0.625163515992662
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.5175879396984925,
|
25 |
+
"accuracy@3": 0.7175879396984924,
|
26 |
+
"accuracy@5": 0.771859296482412,
|
27 |
+
"accuracy@10": 0.8180904522613065,
|
28 |
+
"ndcg@10": 0.6737125432901869,
|
29 |
+
"mrr@10": 0.626774347930127
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"euclidean_distance": {
|
34 |
+
"accuracy@1": 0.5115346038114343,
|
35 |
+
"accuracy@3": 0.7211634904714143,
|
36 |
+
"accuracy@5": 0.7713139418254764,
|
37 |
+
"accuracy@10": 0.8284854563691073,
|
38 |
+
"ndcg@10": 0.6756415397851852,
|
39 |
+
"mrr@10": 0.6259448981866229
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/Retrieval/scores_mrtydi.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.3799830327521453,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "dot_score",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.2510775862068966,
|
9 |
+
"accuracy@3": 0.43426724137931033,
|
10 |
+
"accuracy@5": 0.509698275862069,
|
11 |
+
"accuracy@10": 0.6099137931034483,
|
12 |
+
"ndcg@10": 0.4218713386689512,
|
13 |
+
"mrr@10": 0.3627116687192117
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.2543103448275862,
|
17 |
+
"accuracy@3": 0.4353448275862069,
|
18 |
+
"accuracy@5": 0.5129310344827587,
|
19 |
+
"accuracy@10": 0.6088362068965517,
|
20 |
+
"ndcg@10": 0.4233839243705678,
|
21 |
+
"mrr@10": 0.36503018951833593
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.2510775862068966,
|
25 |
+
"accuracy@3": 0.43211206896551724,
|
26 |
+
"accuracy@5": 0.5129310344827587,
|
27 |
+
"accuracy@10": 0.6109913793103449,
|
28 |
+
"ndcg@10": 0.4220794997894996,
|
29 |
+
"mrr@10": 0.36269199849480005
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"dot_score": {
|
34 |
+
"accuracy@1": 0.24583333333333332,
|
35 |
+
"accuracy@3": 0.42083333333333334,
|
36 |
+
"accuracy@5": 0.5027777777777778,
|
37 |
+
"accuracy@10": 0.6,
|
38 |
+
"ndcg@10": 0.3799830327521453,
|
39 |
+
"mrr@10": 0.3540084876543211
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/Retrieval/scores_nlp_journal_abs_intro.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.9312903487668528,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "cosine_similarity",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.94,
|
9 |
+
"accuracy@3": 0.96,
|
10 |
+
"accuracy@5": 0.98,
|
11 |
+
"accuracy@10": 0.98,
|
12 |
+
"ndcg@10": 0.9607938887245083,
|
13 |
+
"mrr@10": 0.9545
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.94,
|
17 |
+
"accuracy@3": 0.96,
|
18 |
+
"accuracy@5": 0.98,
|
19 |
+
"accuracy@10": 0.98,
|
20 |
+
"ndcg@10": 0.9607938887245083,
|
21 |
+
"mrr@10": 0.9545
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.94,
|
25 |
+
"accuracy@3": 0.96,
|
26 |
+
"accuracy@5": 0.98,
|
27 |
+
"accuracy@10": 0.98,
|
28 |
+
"ndcg@10": 0.9599228286971825,
|
29 |
+
"mrr@10": 0.9533333333333333
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"cosine_similarity": {
|
34 |
+
"accuracy@1": 0.8737623762376238,
|
35 |
+
"accuracy@3": 0.948019801980198,
|
36 |
+
"accuracy@5": 0.9678217821782178,
|
37 |
+
"accuracy@10": 0.9876237623762376,
|
38 |
+
"ndcg@10": 0.9312903487668528,
|
39 |
+
"mrr@10": 0.9131109539525379
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/Retrieval/scores_nlp_journal_title_abs.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.9683680126122469,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "dot_score",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.92,
|
9 |
+
"accuracy@3": 0.98,
|
10 |
+
"accuracy@5": 0.99,
|
11 |
+
"accuracy@10": 1.0,
|
12 |
+
"ndcg@10": 0.964415325130387,
|
13 |
+
"mrr@10": 0.9525
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.92,
|
17 |
+
"accuracy@3": 0.99,
|
18 |
+
"accuracy@5": 0.99,
|
19 |
+
"accuracy@10": 1.0,
|
20 |
+
"ndcg@10": 0.9651085595496531,
|
21 |
+
"mrr@10": 0.9533333333333333
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.92,
|
25 |
+
"accuracy@3": 0.98,
|
26 |
+
"accuracy@5": 0.99,
|
27 |
+
"accuracy@10": 1.0,
|
28 |
+
"ndcg@10": 0.9631060275946723,
|
29 |
+
"mrr@10": 0.9508333333333333
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"dot_score": {
|
34 |
+
"accuracy@1": 0.9381188118811881,
|
35 |
+
"accuracy@3": 0.9826732673267327,
|
36 |
+
"accuracy@5": 0.9876237623762376,
|
37 |
+
"accuracy@10": 0.9925742574257426,
|
38 |
+
"ndcg@10": 0.9683680126122469,
|
39 |
+
"mrr@10": 0.960258525852585
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/Retrieval/scores_nlp_journal_title_intro.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "ndcg@10",
|
3 |
+
"metric_value": 0.8408362653388072,
|
4 |
+
"details": {
|
5 |
+
"optimal_distance_metric": "dot_score",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"accuracy@1": 0.83,
|
9 |
+
"accuracy@3": 0.91,
|
10 |
+
"accuracy@5": 0.94,
|
11 |
+
"accuracy@10": 0.99,
|
12 |
+
"ndcg@10": 0.9046856604073044,
|
13 |
+
"mrr@10": 0.8780952380952379
|
14 |
+
},
|
15 |
+
"dot_score": {
|
16 |
+
"accuracy@1": 0.83,
|
17 |
+
"accuracy@3": 0.91,
|
18 |
+
"accuracy@5": 0.94,
|
19 |
+
"accuracy@10": 0.99,
|
20 |
+
"ndcg@10": 0.9053025824811691,
|
21 |
+
"mrr@10": 0.8787738095238095
|
22 |
+
},
|
23 |
+
"euclidean_distance": {
|
24 |
+
"accuracy@1": 0.83,
|
25 |
+
"accuracy@3": 0.91,
|
26 |
+
"accuracy@5": 0.94,
|
27 |
+
"accuracy@10": 0.99,
|
28 |
+
"ndcg@10": 0.9041030740876984,
|
29 |
+
"mrr@10": 0.8774563492063492
|
30 |
+
}
|
31 |
+
},
|
32 |
+
"test_scores": {
|
33 |
+
"dot_score": {
|
34 |
+
"accuracy@1": 0.7351485148514851,
|
35 |
+
"accuracy@3": 0.8613861386138614,
|
36 |
+
"accuracy@5": 0.9108910891089109,
|
37 |
+
"accuracy@10": 0.943069306930693,
|
38 |
+
"ndcg@10": 0.8408362653388072,
|
39 |
+
"mrr@10": 0.8077675624705328
|
40 |
+
}
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
jmteb/results/STS/scores_jsick.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "spearman",
|
3 |
+
"metric_value": 0.743657520470515,
|
4 |
+
"details": {
|
5 |
+
"optimal_similarity_metric": "dot_score",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"pearson": 0.7957368400871296,
|
9 |
+
"spearman": 0.762797232405231
|
10 |
+
},
|
11 |
+
"manhatten_distance": {
|
12 |
+
"pearson": 0.7896085210418337,
|
13 |
+
"spearman": 0.7623109878831168
|
14 |
+
},
|
15 |
+
"euclidean_distance": {
|
16 |
+
"pearson": 0.7896085210418337,
|
17 |
+
"spearman": 0.7623109878831168
|
18 |
+
},
|
19 |
+
"dot_score": {
|
20 |
+
"pearson": 0.7957067931754913,
|
21 |
+
"spearman": 0.7628188190178943
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"test_scores": {
|
25 |
+
"dot_score": {
|
26 |
+
"pearson": 0.7800093069496337,
|
27 |
+
"spearman": 0.743657520470515
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
jmteb/results/STS/scores_jsts.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metric_name": "spearman",
|
3 |
+
"metric_value": 0.8428310988577061,
|
4 |
+
"details": {
|
5 |
+
"optimal_similarity_metric": "cosine_similarity",
|
6 |
+
"val_scores": {
|
7 |
+
"cosine_similarity": {
|
8 |
+
"pearson": 0.8663617486013027,
|
9 |
+
"spearman": 0.8264545526446698
|
10 |
+
},
|
11 |
+
"manhatten_distance": {
|
12 |
+
"pearson": 0.8624142417397704,
|
13 |
+
"spearman": 0.8263746662985753
|
14 |
+
},
|
15 |
+
"euclidean_distance": {
|
16 |
+
"pearson": 0.8624142417397704,
|
17 |
+
"spearman": 0.8263746662985753
|
18 |
+
},
|
19 |
+
"dot_score": {
|
20 |
+
"pearson": 0.8663097123455762,
|
21 |
+
"spearman": 0.8263795191808255
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"test_scores": {
|
25 |
+
"cosine_similarity": {
|
26 |
+
"pearson": 0.8833575064948627,
|
27 |
+
"spearman": 0.8428310988577061
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
jmteb/results/summary.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"Classification": {
|
3 |
+
"amazon_counterfactual_classification": {
|
4 |
+
"macro_f1": 0.7690321272929969
|
5 |
+
},
|
6 |
+
"amazon_review_classification": {
|
7 |
+
"macro_f1": 0.5998172978417656
|
8 |
+
},
|
9 |
+
"massive_intent_classification": {
|
10 |
+
"macro_f1": 0.8153216318848042
|
11 |
+
},
|
12 |
+
"massive_scenario_classification": {
|
13 |
+
"macro_f1": 0.9014240422977099
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"Reranking": {
|
17 |
+
"esci": {
|
18 |
+
"ndcg@10": 0.9354186207520728
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"Retrieval": {
|
22 |
+
"jagovfaqs_22k": {
|
23 |
+
"ndcg@10": 0.7281126791454011
|
24 |
+
},
|
25 |
+
"jaqket": {
|
26 |
+
"ndcg@10": 0.6756415397851852
|
27 |
+
},
|
28 |
+
"mrtydi": {
|
29 |
+
"ndcg@10": 0.3799830327521453
|
30 |
+
},
|
31 |
+
"nlp_journal_abs_intro": {
|
32 |
+
"ndcg@10": 0.9312903487668528
|
33 |
+
},
|
34 |
+
"nlp_journal_title_abs": {
|
35 |
+
"ndcg@10": 0.9683680126122469
|
36 |
+
},
|
37 |
+
"nlp_journal_title_intro": {
|
38 |
+
"ndcg@10": 0.8408362653388072
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"STS": {
|
42 |
+
"jsick": {
|
43 |
+
"spearman": 0.743657520470515
|
44 |
+
},
|
45 |
+
"jsts": {
|
46 |
+
"spearman": 0.8428310988577061
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"Clustering": {
|
50 |
+
"livedoor_news": {
|
51 |
+
"v_measure_score": 0.513545352498706
|
52 |
+
},
|
53 |
+
"mewsc16": {
|
54 |
+
"v_measure_score": 0.46097799248263915
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"PairClassification": {
|
58 |
+
"paws_x_ja": {
|
59 |
+
"binary_f1": 0.6097337006427915
|
60 |
+
}
|
61 |
+
}
|
62 |
+
}
|
jmteb/tasks/amazon_counterfactual_classification.jsonnet
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
amazon_counterfactual_classification: {
|
3 |
+
class_path: 'ClassificationEvaluator',
|
4 |
+
init_args: {
|
5 |
+
train_dataset: {
|
6 |
+
class_path: 'HfClassificationDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'train',
|
10 |
+
name: 'amazon_counterfactual_classification',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
val_dataset: {
|
14 |
+
class_path: 'HfClassificationDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'validation',
|
18 |
+
name: 'amazon_counterfactual_classification',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
test_dataset: {
|
22 |
+
class_path: 'HfClassificationDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'test',
|
26 |
+
name: 'amazon_counterfactual_classification',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
prefix: '同じクラスに属する文を探すために次の文を表現して\n',
|
30 |
+
},
|
31 |
+
},
|
32 |
+
}
|
jmteb/tasks/amazon_review_classification.jsonnet
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
amazon_review_classification: {
|
3 |
+
class_path: 'ClassificationEvaluator',
|
4 |
+
init_args: {
|
5 |
+
train_dataset: {
|
6 |
+
class_path: 'HfClassificationDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'train',
|
10 |
+
name: 'amazon_review_classification',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
val_dataset: {
|
14 |
+
class_path: 'HfClassificationDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'validation',
|
18 |
+
name: 'amazon_review_classification',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
test_dataset: {
|
22 |
+
class_path: 'HfClassificationDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'test',
|
26 |
+
name: 'amazon_review_classification',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
prefix: '同じクラスに属する文を探すために次の文を表現して\n',
|
30 |
+
},
|
31 |
+
},
|
32 |
+
}
|
jmteb/tasks/esci.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
esci: {
|
3 |
+
class_path: 'RerankingEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRerankingQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'esci-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRerankingQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'esci-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRerankingDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'esci-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/jagovfaqs_22k.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
jagovfaqs_22k: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'jagovfaqs_22k-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'jagovfaqs_22k-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'jagovfaqs_22k-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/jaqket.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
jaqket: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'jaqket-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'jaqket-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'jaqket-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/jsick.jsonnet
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
jsick: {
|
3 |
+
class_path: 'STSEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_dataset: {
|
6 |
+
class_path: 'HfSTSDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'jsick',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_dataset: {
|
14 |
+
class_path: 'HfSTSDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'jsick',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
22 |
+
sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
23 |
+
},
|
24 |
+
},
|
25 |
+
}
|
jmteb/tasks/jsts.jsonnet
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
jsts: {
|
3 |
+
class_path: 'STSEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_dataset: {
|
6 |
+
class_path: 'HfSTSDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'train',
|
10 |
+
name: 'jsts',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_dataset: {
|
14 |
+
class_path: 'HfSTSDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'jsts',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
22 |
+
sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
23 |
+
},
|
24 |
+
},
|
25 |
+
}
|
jmteb/tasks/livedoor_news.jsonnet
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
livedoor_news: {
|
3 |
+
class_path: 'ClusteringEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_dataset: {
|
6 |
+
class_path: 'HfClusteringDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'livedoor_news',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_dataset: {
|
14 |
+
class_path: 'HfClusteringDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'livedoor_news',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
prefix: '類似した文を探すために次の文を表現して\n',
|
22 |
+
},
|
23 |
+
},
|
24 |
+
}
|
jmteb/tasks/massive_intent_classification.jsonnet
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
massive_intent_classification: {
|
3 |
+
class_path: 'ClassificationEvaluator',
|
4 |
+
init_args: {
|
5 |
+
train_dataset: {
|
6 |
+
class_path: 'HfClassificationDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'train',
|
10 |
+
name: 'massive_intent_classification',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
val_dataset: {
|
14 |
+
class_path: 'HfClassificationDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'validation',
|
18 |
+
name: 'massive_intent_classification',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
test_dataset: {
|
22 |
+
class_path: 'HfClassificationDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'test',
|
26 |
+
name: 'massive_intent_classification',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
prefix: '同じクラスに属する文を探すために次の文を表現して\n',
|
30 |
+
},
|
31 |
+
},
|
32 |
+
}
|
jmteb/tasks/massive_scenario_classification.jsonnet
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
massive_scenario_classification: {
|
3 |
+
class_path: 'ClassificationEvaluator',
|
4 |
+
init_args: {
|
5 |
+
train_dataset: {
|
6 |
+
class_path: 'HfClassificationDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'train',
|
10 |
+
name: 'massive_scenario_classification',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
val_dataset: {
|
14 |
+
class_path: 'HfClassificationDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'validation',
|
18 |
+
name: 'massive_scenario_classification',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
test_dataset: {
|
22 |
+
class_path: 'HfClassificationDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'test',
|
26 |
+
name: 'massive_scenario_classification',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
prefix: '同じクラスに属する文を探すために次の文を表現して\n',
|
30 |
+
},
|
31 |
+
},
|
32 |
+
}
|
jmteb/tasks/mewsc16.jsonnet
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
mewsc16: {
|
3 |
+
class_path: 'ClusteringEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_dataset: {
|
6 |
+
class_path: 'HfClusteringDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'mewsc16_ja',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_dataset: {
|
14 |
+
class_path: 'HfClusteringDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'mewsc16_ja',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
prefix: '類似した文を探すために次の文を表現して\n',
|
22 |
+
},
|
23 |
+
},
|
24 |
+
}
|
jmteb/tasks/mrtydi.jsonnet
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
mrtydi: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'mrtydi-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'mrtydi-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'mrtydi-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
"doc_chunk_size":10000,
|
30 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
31 |
+
doc_prefix: '次の文章を表現して\n',
|
32 |
+
},
|
33 |
+
},
|
34 |
+
}
|
jmteb/tasks/nlp_journal_abs_intro.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
nlp_journal_abs_intro: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'nlp_journal_abs_intro-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'nlp_journal_abs_intro-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'nlp_journal_abs_intro-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/nlp_journal_title_abs.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
nlp_journal_title_abs: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'nlp_journal_title_abs-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'nlp_journal_title_abs-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'nlp_journal_title_abs-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/nlp_journal_title_intro.jsonnet
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
nlp_journal_title_intro: {
|
3 |
+
class_path: 'RetrievalEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_query_dataset: {
|
6 |
+
class_path: 'HfRetrievalQueryDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'nlp_journal_title_intro-query',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_query_dataset: {
|
14 |
+
class_path: 'HfRetrievalQueryDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'nlp_journal_title_intro-query',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
doc_dataset: {
|
22 |
+
class_path: 'HfRetrievalDocDataset',
|
23 |
+
init_args: {
|
24 |
+
path: 'sbintuitions/JMTEB',
|
25 |
+
split: 'corpus',
|
26 |
+
name: 'nlp_journal_title_intro-corpus',
|
27 |
+
},
|
28 |
+
},
|
29 |
+
query_prefix: '関連した文書を探すために次の文を表現して\n',
|
30 |
+
doc_prefix: '次の文章を表現して\n',
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
jmteb/tasks/paws_x_ja.jsonnet
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
paws_x_ja: {
|
3 |
+
class_path: 'PairClassificationEvaluator',
|
4 |
+
init_args: {
|
5 |
+
val_dataset: {
|
6 |
+
class_path: 'HfPairClassificationDataset',
|
7 |
+
init_args: {
|
8 |
+
path: 'sbintuitions/JMTEB',
|
9 |
+
split: 'validation',
|
10 |
+
name: 'paws_x_ja',
|
11 |
+
},
|
12 |
+
},
|
13 |
+
test_dataset: {
|
14 |
+
class_path: 'HfPairClassificationDataset',
|
15 |
+
init_args: {
|
16 |
+
path: 'sbintuitions/JMTEB',
|
17 |
+
split: 'test',
|
18 |
+
name: 'paws_x_ja',
|
19 |
+
},
|
20 |
+
},
|
21 |
+
sentence1_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
22 |
+
sentence2_prefix: '同じ意味の文を探すために次の文を表現して\n',
|
23 |
+
},
|
24 |
+
},
|
25 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bba8db1bb981e84c4c056423407063f9b3c83bf4e9569598c1428c2a5b6c167a
|
3 |
+
size 629238896
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
mteb/models/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .default import PROMPT as default_prompt
|
2 |
+
from .retrieva import PROMPT as retrieva_prompt
|
3 |
+
from .retrieva_en import PROMPT as retrieva_en_prompt
|
4 |
+
|
5 |
+
|
6 |
+
PROMPTS = {
|
7 |
+
"default": default_prompt,
|
8 |
+
"retrieva": retrieva_prompt,
|
9 |
+
"retrieva-en": retrieva_en_prompt,
|
10 |
+
}
|
mteb/models/default.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROMPT = {
|
2 |
+
"query": "query: ",
|
3 |
+
"passage": "passage: ",
|
4 |
+
}
|
mteb/models/retrieva.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROMPT = {
|
2 |
+
"STS": "同じ意味の文を探すために次の文を表現して\n",
|
3 |
+
"Summarization": "次の記事またはタイトルを表現して\n",
|
4 |
+
"BitextMining": "次の文を表現して\n",
|
5 |
+
"Classification": "同じクラスに属する文を探すために次の文を表現して\n",
|
6 |
+
"Clustering": "類似した文を探すために次の文を表現して\n",
|
7 |
+
"Reranking-query": "関連した文書を探すために次の文を表現して\n",
|
8 |
+
"Reranking-passage": "次の文章を表現して\n",
|
9 |
+
"Retrieval-query": "関連した文書を探すために次の文を表現して\n",
|
10 |
+
"Retrieval-passage": "次の文章を表現して\n",
|
11 |
+
"InstructionRetrieval": "",
|
12 |
+
"PairClassification": "同じ意味の文を探すために次の文を表現して\n",
|
13 |
+
}
|
mteb/models/retrieva_en.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROMPT = {
|
2 |
+
"STS": "Represent the sentence for retrieving duplicate sentences:\n",
|
3 |
+
"Summarization": "Represent the news article or news title for retrieval:\n",
|
4 |
+
"BitextMining": "Represent the sentence\n",
|
5 |
+
"Classification": "Represent the sentence for retrieving the sentence belonging to the same category:\n",
|
6 |
+
"Clustering": "Represent the sentence to find similar sentences:\n",
|
7 |
+
"Reranking-query": "Represent the question:\n",
|
8 |
+
"Reranking-passage": "Represent the following text:\n",
|
9 |
+
"Retrieval-query": "Represent the question:\n",
|
10 |
+
"Retrieval-passage": "Represent the following text:\n",
|
11 |
+
"InstructionRetrieval": "Retrieve text based on user query:\n",
|
12 |
+
"PairClassification": "Represent the sentence for retrieving duplicate sentences:\n",
|
13 |
+
"MultilabelClassification": "Represent the sentence for retrieving the sentence belonging to the same category:\n",
|
14 |
+
"Speed": "",
|
15 |
+
}
|
mteb/mteb_eval.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Evaluate AMBER models"""
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
import mteb
|
6 |
+
|
7 |
+
from models import PROMPTS
|
8 |
+
|
9 |
+
BENCHMARKS = {
|
10 |
+
"en": "MTEB(eng, v2)",
|
11 |
+
"ja": "MTEB(jpn, v1)",
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
def get_args() -> argparse.Namespace:
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument("--model_type", type=str, required=True, help="Model name", choices=PROMPTS.keys())
|
18 |
+
parser.add_argument("--model_name_or_path", type=str, required=True)
|
19 |
+
parser.add_argument("--batch_size", type=int, default=32, help="Batch size")
|
20 |
+
parser.add_argument("--output_dir", type=str, required=True, help="Output directory")
|
21 |
+
parser.add_argument("--benchmark", type=str, required=True, choices=BENCHMARKS.keys())
|
22 |
+
parser.add_argument("--corpus_chunk_size", type=int, default=50000)
|
23 |
+
parser.add_argument("--convert_to_tensor", action="store_true")
|
24 |
+
return parser.parse_args()
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
args = get_args()
|
29 |
+
prompt = PROMPTS[args.model_type]
|
30 |
+
model = mteb.get_model(args.model_name_or_path, model_prompts=prompt)
|
31 |
+
|
32 |
+
tasks = mteb.get_benchmark(BENCHMARKS[args.benchmark])
|
33 |
+
evaluation = mteb.MTEB(tasks=tasks)
|
34 |
+
|
35 |
+
encode_kwargs = {
|
36 |
+
"batch_size": args.batch_size,
|
37 |
+
"convert_to_tensor": args.convert_to_tensor,
|
38 |
+
}
|
39 |
+
|
40 |
+
evaluation.run(
|
41 |
+
model,
|
42 |
+
output_folder=args.output_dir,
|
43 |
+
encode_kwargs=encode_kwargs,
|
44 |
+
corpus_chunk_size=args.corpus_chunk_size,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
main()
|
mteb/results/AmazonCounterfactualClassification.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "e8379541af4e31359cca9fbcf4b00f2671dba205",
|
3 |
+
"task_name": "AmazonCounterfactualClassification",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"accuracy": 0.733433,
|
9 |
+
"f1": 0.672899,
|
10 |
+
"f1_weighted": 0.757948,
|
11 |
+
"ap": 0.36123,
|
12 |
+
"ap_weighted": 0.36123,
|
13 |
+
"scores_per_experiment": [
|
14 |
+
{
|
15 |
+
"accuracy": 0.743284,
|
16 |
+
"f1": 0.687055,
|
17 |
+
"f1_weighted": 0.767834,
|
18 |
+
"ap": 0.378554,
|
19 |
+
"ap_weighted": 0.378554
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"accuracy": 0.768657,
|
23 |
+
"f1": 0.709178,
|
24 |
+
"f1_weighted": 0.789268,
|
25 |
+
"ap": 0.40075,
|
26 |
+
"ap_weighted": 0.40075
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"accuracy": 0.635821,
|
30 |
+
"f1": 0.59181,
|
31 |
+
"f1_weighted": 0.67343,
|
32 |
+
"ap": 0.295662,
|
33 |
+
"ap_weighted": 0.295662
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"accuracy": 0.729851,
|
37 |
+
"f1": 0.67607,
|
38 |
+
"f1_weighted": 0.756446,
|
39 |
+
"ap": 0.369058,
|
40 |
+
"ap_weighted": 0.369058
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"accuracy": 0.741791,
|
44 |
+
"f1": 0.678645,
|
45 |
+
"f1_weighted": 0.765391,
|
46 |
+
"ap": 0.361706,
|
47 |
+
"ap_weighted": 0.361706
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"accuracy": 0.731343,
|
51 |
+
"f1": 0.662842,
|
52 |
+
"f1_weighted": 0.755387,
|
53 |
+
"ap": 0.339825,
|
54 |
+
"ap_weighted": 0.339825
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"accuracy": 0.81791,
|
58 |
+
"f1": 0.745149,
|
59 |
+
"f1_weighted": 0.828073,
|
60 |
+
"ap": 0.434356,
|
61 |
+
"ap_weighted": 0.434356
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"accuracy": 0.783582,
|
65 |
+
"f1": 0.715912,
|
66 |
+
"f1_weighted": 0.800345,
|
67 |
+
"ap": 0.400671,
|
68 |
+
"ap_weighted": 0.400671
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"accuracy": 0.698507,
|
72 |
+
"f1": 0.637958,
|
73 |
+
"f1_weighted": 0.728119,
|
74 |
+
"ap": 0.321782,
|
75 |
+
"ap_weighted": 0.321782
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"accuracy": 0.683582,
|
79 |
+
"f1": 0.624376,
|
80 |
+
"f1_weighted": 0.715188,
|
81 |
+
"ap": 0.309935,
|
82 |
+
"ap_weighted": 0.309935
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"main_score": 0.733433,
|
86 |
+
"hf_subset": "en",
|
87 |
+
"languages": [
|
88 |
+
"eng-Latn"
|
89 |
+
]
|
90 |
+
}
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"evaluation_time": 12.824249505996704,
|
94 |
+
"kg_co2_emissions": null
|
95 |
+
}
|
mteb/results/ArXivHierarchicalClusteringP2P.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "0bbdb47bcbe3a90093699aefeed338a0f28a7ee8",
|
3 |
+
"task_name": "ArXivHierarchicalClusteringP2P",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"v_measures": {
|
9 |
+
"Level 0": [
|
10 |
+
0.531687,
|
11 |
+
0.515416,
|
12 |
+
0.534512,
|
13 |
+
0.516432,
|
14 |
+
0.485335,
|
15 |
+
0.491114,
|
16 |
+
0.452959,
|
17 |
+
0.509849,
|
18 |
+
0.474611,
|
19 |
+
0.47921
|
20 |
+
],
|
21 |
+
"Level 1": [
|
22 |
+
0.57501,
|
23 |
+
0.561921,
|
24 |
+
0.57618,
|
25 |
+
0.565423,
|
26 |
+
0.581718,
|
27 |
+
0.556907,
|
28 |
+
0.557507,
|
29 |
+
0.569016,
|
30 |
+
0.559128,
|
31 |
+
0.584777
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"v_measure": 0.533936,
|
35 |
+
"v_measure_std": 0.039727,
|
36 |
+
"main_score": 0.533936,
|
37 |
+
"hf_subset": "default",
|
38 |
+
"languages": [
|
39 |
+
"eng-Latn"
|
40 |
+
]
|
41 |
+
}
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"evaluation_time": 7.786345720291138,
|
45 |
+
"kg_co2_emissions": null
|
46 |
+
}
|
mteb/results/ArXivHierarchicalClusteringS2S.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3",
|
3 |
+
"task_name": "ArXivHierarchicalClusteringS2S",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"v_measures": {
|
9 |
+
"Level 0": [
|
10 |
+
0.447898,
|
11 |
+
0.479182,
|
12 |
+
0.446903,
|
13 |
+
0.457972,
|
14 |
+
0.443715,
|
15 |
+
0.488723,
|
16 |
+
0.479857,
|
17 |
+
0.492344,
|
18 |
+
0.471878,
|
19 |
+
0.458149
|
20 |
+
],
|
21 |
+
"Level 1": [
|
22 |
+
0.55827,
|
23 |
+
0.55466,
|
24 |
+
0.567894,
|
25 |
+
0.586775,
|
26 |
+
0.541746,
|
27 |
+
0.576662,
|
28 |
+
0.574423,
|
29 |
+
0.552522,
|
30 |
+
0.536173,
|
31 |
+
0.556257
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"v_measure": 0.5136,
|
35 |
+
"v_measure_std": 0.049623,
|
36 |
+
"main_score": 0.5136,
|
37 |
+
"hf_subset": "default",
|
38 |
+
"languages": [
|
39 |
+
"eng-Latn"
|
40 |
+
]
|
41 |
+
}
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"evaluation_time": 6.605703115463257,
|
45 |
+
"kg_co2_emissions": null
|
46 |
+
}
|
mteb/results/ArguAna.json
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a",
|
3 |
+
"task_name": "ArguAna",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"ndcg_at_1": 0.26743,
|
9 |
+
"ndcg_at_3": 0.40551,
|
10 |
+
"ndcg_at_5": 0.4555,
|
11 |
+
"ndcg_at_10": 0.51317,
|
12 |
+
"ndcg_at_20": 0.53963,
|
13 |
+
"ndcg_at_100": 0.55358,
|
14 |
+
"ndcg_at_1000": 0.55596,
|
15 |
+
"map_at_1": 0.26743,
|
16 |
+
"map_at_3": 0.37162,
|
17 |
+
"map_at_5": 0.39964,
|
18 |
+
"map_at_10": 0.42355,
|
19 |
+
"map_at_20": 0.431,
|
20 |
+
"map_at_100": 0.43313,
|
21 |
+
"map_at_1000": 0.43323,
|
22 |
+
"recall_at_1": 0.26743,
|
23 |
+
"recall_at_3": 0.50356,
|
24 |
+
"recall_at_5": 0.62376,
|
25 |
+
"recall_at_10": 0.80156,
|
26 |
+
"recall_at_20": 0.90469,
|
27 |
+
"recall_at_100": 0.97724,
|
28 |
+
"recall_at_1000": 0.99502,
|
29 |
+
"precision_at_1": 0.26743,
|
30 |
+
"precision_at_3": 0.16785,
|
31 |
+
"precision_at_5": 0.12475,
|
32 |
+
"precision_at_10": 0.08016,
|
33 |
+
"precision_at_20": 0.04523,
|
34 |
+
"precision_at_100": 0.00977,
|
35 |
+
"precision_at_1000": 0.001,
|
36 |
+
"mrr_at_1": 0.271693,
|
37 |
+
"mrr_at_3": 0.374111,
|
38 |
+
"mrr_at_5": 0.401102,
|
39 |
+
"mrr_at_10": 0.424939,
|
40 |
+
"mrr_at_20": 0.432491,
|
41 |
+
"mrr_at_100": 0.434578,
|
42 |
+
"mrr_at_1000": 0.434685,
|
43 |
+
"nauc_ndcg_at_1_max": -0.062333,
|
44 |
+
"nauc_ndcg_at_1_std": -0.079555,
|
45 |
+
"nauc_ndcg_at_1_diff1": 0.14512,
|
46 |
+
"nauc_ndcg_at_3_max": -0.021476,
|
47 |
+
"nauc_ndcg_at_3_std": -0.058094,
|
48 |
+
"nauc_ndcg_at_3_diff1": 0.09136,
|
49 |
+
"nauc_ndcg_at_5_max": -0.017068,
|
50 |
+
"nauc_ndcg_at_5_std": -0.050188,
|
51 |
+
"nauc_ndcg_at_5_diff1": 0.094328,
|
52 |
+
"nauc_ndcg_at_10_max": 0.007445,
|
53 |
+
"nauc_ndcg_at_10_std": -0.035482,
|
54 |
+
"nauc_ndcg_at_10_diff1": 0.111,
|
55 |
+
"nauc_ndcg_at_20_max": 0.00472,
|
56 |
+
"nauc_ndcg_at_20_std": -0.033913,
|
57 |
+
"nauc_ndcg_at_20_diff1": 0.112196,
|
58 |
+
"nauc_ndcg_at_100_max": -0.011079,
|
59 |
+
"nauc_ndcg_at_100_std": -0.038187,
|
60 |
+
"nauc_ndcg_at_100_diff1": 0.109808,
|
61 |
+
"nauc_ndcg_at_1000_max": -0.013786,
|
62 |
+
"nauc_ndcg_at_1000_std": -0.043135,
|
63 |
+
"nauc_ndcg_at_1000_diff1": 0.109463,
|
64 |
+
"nauc_map_at_1_max": -0.062333,
|
65 |
+
"nauc_map_at_1_std": -0.079555,
|
66 |
+
"nauc_map_at_1_diff1": 0.14512,
|
67 |
+
"nauc_map_at_3_max": -0.033212,
|
68 |
+
"nauc_map_at_3_std": -0.062437,
|
69 |
+
"nauc_map_at_3_diff1": 0.101283,
|
70 |
+
"nauc_map_at_5_max": -0.030931,
|
71 |
+
"nauc_map_at_5_std": -0.057626,
|
72 |
+
"nauc_map_at_5_diff1": 0.103327,
|
73 |
+
"nauc_map_at_10_max": -0.022469,
|
74 |
+
"nauc_map_at_10_std": -0.052611,
|
75 |
+
"nauc_map_at_10_diff1": 0.110171,
|
76 |
+
"nauc_map_at_20_max": -0.02358,
|
77 |
+
"nauc_map_at_20_std": -0.05255,
|
78 |
+
"nauc_map_at_20_diff1": 0.110437,
|
79 |
+
"nauc_map_at_100_max": -0.025533,
|
80 |
+
"nauc_map_at_100_std": -0.052893,
|
81 |
+
"nauc_map_at_100_diff1": 0.110186,
|
82 |
+
"nauc_map_at_1000_max": -0.025621,
|
83 |
+
"nauc_map_at_1000_std": -0.053072,
|
84 |
+
"nauc_map_at_1000_diff1": 0.110196,
|
85 |
+
"nauc_recall_at_1_max": -0.062333,
|
86 |
+
"nauc_recall_at_1_std": -0.079555,
|
87 |
+
"nauc_recall_at_1_diff1": 0.14512,
|
88 |
+
"nauc_recall_at_3_max": 0.012414,
|
89 |
+
"nauc_recall_at_3_std": -0.046148,
|
90 |
+
"nauc_recall_at_3_diff1": 0.0645,
|
91 |
+
"nauc_recall_at_5_max": 0.027998,
|
92 |
+
"nauc_recall_at_5_std": -0.026652,
|
93 |
+
"nauc_recall_at_5_diff1": 0.067526,
|
94 |
+
"nauc_recall_at_10_max": 0.173221,
|
95 |
+
"nauc_recall_at_10_std": 0.059032,
|
96 |
+
"nauc_recall_at_10_diff1": 0.128819,
|
97 |
+
"nauc_recall_at_20_max": 0.296782,
|
98 |
+
"nauc_recall_at_20_std": 0.164192,
|
99 |
+
"nauc_recall_at_20_diff1": 0.158604,
|
100 |
+
"nauc_recall_at_100_max": 0.287726,
|
101 |
+
"nauc_recall_at_100_std": 0.487738,
|
102 |
+
"nauc_recall_at_100_diff1": 0.158629,
|
103 |
+
"nauc_recall_at_1000_max": 0.310293,
|
104 |
+
"nauc_recall_at_1000_std": 0.527185,
|
105 |
+
"nauc_recall_at_1000_diff1": 0.143646,
|
106 |
+
"nauc_precision_at_1_max": -0.062333,
|
107 |
+
"nauc_precision_at_1_std": -0.079555,
|
108 |
+
"nauc_precision_at_1_diff1": 0.14512,
|
109 |
+
"nauc_precision_at_3_max": 0.012414,
|
110 |
+
"nauc_precision_at_3_std": -0.046148,
|
111 |
+
"nauc_precision_at_3_diff1": 0.0645,
|
112 |
+
"nauc_precision_at_5_max": 0.027998,
|
113 |
+
"nauc_precision_at_5_std": -0.026652,
|
114 |
+
"nauc_precision_at_5_diff1": 0.067526,
|
115 |
+
"nauc_precision_at_10_max": 0.173221,
|
116 |
+
"nauc_precision_at_10_std": 0.059032,
|
117 |
+
"nauc_precision_at_10_diff1": 0.128819,
|
118 |
+
"nauc_precision_at_20_max": 0.296782,
|
119 |
+
"nauc_precision_at_20_std": 0.164192,
|
120 |
+
"nauc_precision_at_20_diff1": 0.158604,
|
121 |
+
"nauc_precision_at_100_max": 0.287726,
|
122 |
+
"nauc_precision_at_100_std": 0.487738,
|
123 |
+
"nauc_precision_at_100_diff1": 0.158629,
|
124 |
+
"nauc_precision_at_1000_max": 0.310293,
|
125 |
+
"nauc_precision_at_1000_std": 0.527185,
|
126 |
+
"nauc_precision_at_1000_diff1": 0.143646,
|
127 |
+
"nauc_mrr_at_1_max": -0.060675,
|
128 |
+
"nauc_mrr_at_1_std": -0.070284,
|
129 |
+
"nauc_mrr_at_1_diff1": 0.131112,
|
130 |
+
"nauc_mrr_at_3_max": -0.038593,
|
131 |
+
"nauc_mrr_at_3_std": -0.059281,
|
132 |
+
"nauc_mrr_at_3_diff1": 0.08807,
|
133 |
+
"nauc_mrr_at_5_max": -0.036333,
|
134 |
+
"nauc_mrr_at_5_std": -0.053817,
|
135 |
+
"nauc_mrr_at_5_diff1": 0.090466,
|
136 |
+
"nauc_mrr_at_10_max": -0.028869,
|
137 |
+
"nauc_mrr_at_10_std": -0.049811,
|
138 |
+
"nauc_mrr_at_10_diff1": 0.095897,
|
139 |
+
"nauc_mrr_at_20_max": -0.029609,
|
140 |
+
"nauc_mrr_at_20_std": -0.049429,
|
141 |
+
"nauc_mrr_at_20_diff1": 0.096326,
|
142 |
+
"nauc_mrr_at_100_max": -0.0315,
|
143 |
+
"nauc_mrr_at_100_std": -0.049643,
|
144 |
+
"nauc_mrr_at_100_diff1": 0.096056,
|
145 |
+
"nauc_mrr_at_1000_max": -0.03159,
|
146 |
+
"nauc_mrr_at_1000_std": -0.04982,
|
147 |
+
"nauc_mrr_at_1000_diff1": 0.096061,
|
148 |
+
"main_score": 0.51317,
|
149 |
+
"hf_subset": "default",
|
150 |
+
"languages": [
|
151 |
+
"eng-Latn"
|
152 |
+
]
|
153 |
+
}
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"evaluation_time": 51.13386678695679,
|
157 |
+
"kg_co2_emissions": null
|
158 |
+
}
|
mteb/results/AskUbuntuDupQuestions.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "2000358ca161889fa9c082cb41daa8dcfb161a54",
|
3 |
+
"task_name": "AskUbuntuDupQuestions",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"map": 0.580233,
|
9 |
+
"mrr": 0.705882,
|
10 |
+
"nAUC_map_max": 0.208533,
|
11 |
+
"nAUC_map_std": 0.126123,
|
12 |
+
"nAUC_map_diff1": 0.013859,
|
13 |
+
"nAUC_mrr_max": 0.33692,
|
14 |
+
"nAUC_mrr_std": 0.141764,
|
15 |
+
"nAUC_mrr_diff1": 0.142379,
|
16 |
+
"main_score": 0.580233,
|
17 |
+
"hf_subset": "default",
|
18 |
+
"languages": [
|
19 |
+
"eng-Latn"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"evaluation_time": 4.280848503112793,
|
25 |
+
"kg_co2_emissions": null
|
26 |
+
}
|
mteb/results/BIOSSES.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a",
|
3 |
+
"task_name": "BIOSSES",
|
4 |
+
"mteb_version": "1.36.1",
|
5 |
+
"scores": {
|
6 |
+
"test": [
|
7 |
+
{
|
8 |
+
"pearson": 0.834314,
|
9 |
+
"spearman": 0.787367,
|
10 |
+
"cosine_pearson": 0.834314,
|
11 |
+
"cosine_spearman": 0.787367,
|
12 |
+
"manhattan_pearson": 0.821388,
|
13 |
+
"manhattan_spearman": 0.78747,
|
14 |
+
"euclidean_pearson": 0.821716,
|
15 |
+
"euclidean_spearman": 0.787367,
|
16 |
+
"main_score": 0.787367,
|
17 |
+
"hf_subset": "default",
|
18 |
+
"languages": [
|
19 |
+
"eng-Latn"
|
20 |
+
]
|
21 |
+
}
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"evaluation_time": 0.5205843448638916,
|
25 |
+
"kg_co2_emissions": null
|
26 |
+
}
|