File size: 24,741 Bytes
e5d453c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:178
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: Where can investors find more information about NVIDIA's financial
    information and company updates?
  sentences:
  - ' The potential risks include restrictions on sales of products containing certain
    components made by Micron, restrictions on receiving supply of components, parts,
    or services from Taiwan, increased scrutiny from shareholders, regulators, and
    others regarding corporate sustainability practices, and failure to meet evolving
    shareholder, regulator, or other industry stakeholder expectations, which could
    result in additional costs, reputational harm, and loss of customers and suppliers.'
  - ' Investors and others can find more information about NVIDIA''s financial information
    and company updates on the company''s investor relations website, through press
    releases, SEC filings, public conference calls and webcasts, as well as on the
    company''s social media channels, including Twitter, the NVIDIA Corporate Blog,
    Facebook, LinkedIn, Instagram, and YouTube.'
  - ' The text mentions the following forms and agreements: Officers'' Certificate,
    Form of Note (with various years), Form of Indemnity Agreement, Amended and Restated
    2007 Equity Incentive Plan, Non-Employee Director Deferred Restricted Stock Unit
    Grant Notice and Deferred Restricted Stock Unit Agreement, Non-Employee Director
    Restricted Stock Unit Grant Notice and Restricted Stock Unit Agreement, Global
    Performance-Based Restricted Stock Unit Grant Notice and Performance-Based Restricted
    Stock Unit Agreement, Global Restricted Stock Unit Grant Notice and Global Restricted
    Stock Unit Agreement, and various Schedules and Exhibits (such as 2.1, 3.1, 4.1,
    4.2, 10.1, 10.2, 10.26, and 10.27).'
- source_sentence: What are the potential consequences if regulators in China conclude
    that NVIDIA has failed to fulfill its commitments or has violated applicable law
    in China?
  sentences:
  - ' The company''s share repurchase program aims to offset dilution from shares
    issued to employees.'
  - ' Ms. Shoquist served as Senior Vice President and General Manager of the Electro-Optics
    business at Coherent, Inc., and previously worked at Quantum Corp. as President
    of the Personal Computer Hard Disk Drive Division, and at Hewlett-Packard.'
  - ' If regulators in China conclude that NVIDIA has failed to fulfill its commitments
    or has violated applicable law in China, the company could be subject to various
    penalties or restrictions on its ability to conduct its business, which could
    have a material and adverse impact on its business, operating results, and financial
    condition.'
- source_sentence: What percentage of the company's revenue was attributed to sales
    to customers outside of the United States in fiscal year 2024?
  sentences:
  - ' NVIDIA reports its business results in two segments: the Compute & Networking
    segment and the Graphics segment.'
  - ' The company expects to use its existing cash, cash equivalents, and marketable
    securities, as well as the cash generated by its operations, to fund its capital
    investments of approximately $3.5 billion to $4.0 billion related to property
    and equipment during fiscal year 2025.'
  - ' 56% of the company''s total revenue in fiscal year 2024 was attributed to sales
    to customers outside of the United States.'
- source_sentence: What is the net income per share of NVIDIA Corporation for the
    year ended January 29, 2023?
  sentences:
  - ' 6% of the company''s workforce in the United States is composed of Black or
    African American employees.'
  - ' The net income per share of NVIDIA Corporation for the year ended January 29,
    2023 is $12.05 for basic and $11.93 for diluted.'
  - ' The company may face potential risks and challenges such as increased expenses,
    substantial expenditures and time spent to fully resume operations, disruption
    to product development or operations due to employees being called-up for active
    military duty, and potential impact on future product development, operations,
    and revenue. Additionally, the company may also experience interruptions or delays
    in services from third-party providers, which could impair its ability to provide
    its products and services and harm its business.'
- source_sentence: What percentage of the company's accounts receivable balance as
    of January 28, 2024, was accounted for by two customers?
  sentences:
  - ' The change in equipment and assembly and test equipment resulted in a benefit
    of $135 million in operating income and $114 million in net income, or $0.05 per
    both basic and diluted share, for the fiscal year ended January 28, 2024.'
  - ' The estimates of deferred tax assets and liabilities may change based on added
    certainty or finality to an anticipated outcome, changes in accounting standards
    or tax laws in the U.S. or foreign jurisdictions where the company operates, or
    changes in other facts or circumstances.'
  - ' 24% and 11%, which is a total of 35%.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: bge base en
      type: bge-base-en
    metrics:
    - type: cosine_accuracy@1
      value: 0.9269662921348315
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9831460674157303
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9943820224719101
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9269662921348315
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3277153558052434
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.198876404494382
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9269662921348315
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9831460674157303
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9943820224719101
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9682702490705566
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9575842696629214
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9575842696629213
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.9269662921348315
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9831460674157303
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9943820224719101
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.9269662921348315
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.3277153558052434
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.198876404494382
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.9269662921348315
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.9831460674157303
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9943820224719101
      name: Dot Recall@5
    - type: dot_recall@10
      value: 1.0
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9682702490705566
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9575842696629214
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9575842696629213
      name: Dot Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - train
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rezarahim/bge-finetuned-detail")
# Run inference
sentences = [
    "What percentage of the company's accounts receivable balance as of January 28, 2024, was accounted for by two customers?",
    ' 24% and 11%, which is a total of 35%.',
    ' The change in equipment and assembly and test equipment resulted in a benefit of $135 million in operating income and $114 million in net income, or $0.05 per both basic and diluted share, for the fiscal year ended January 28, 2024.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `bge-base-en`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.927      |
| cosine_accuracy@3   | 0.9831     |
| cosine_accuracy@5   | 0.9944     |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.927      |
| cosine_precision@3  | 0.3277     |
| cosine_precision@5  | 0.1989     |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.927      |
| cosine_recall@3     | 0.9831     |
| cosine_recall@5     | 0.9944     |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9683     |
| cosine_mrr@10       | 0.9576     |
| **cosine_map@100**  | **0.9576** |
| dot_accuracy@1      | 0.927      |
| dot_accuracy@3      | 0.9831     |
| dot_accuracy@5      | 0.9944     |
| dot_accuracy@10     | 1.0        |
| dot_precision@1     | 0.927      |
| dot_precision@3     | 0.3277     |
| dot_precision@5     | 0.1989     |
| dot_precision@10    | 0.1        |
| dot_recall@1        | 0.927      |
| dot_recall@3        | 0.9831     |
| dot_recall@5        | 0.9944     |
| dot_recall@10       | 1.0        |
| dot_ndcg@10         | 0.9683     |
| dot_mrr@10          | 0.9576     |
| dot_map@100         | 0.9576     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: train
* Size: 178 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 178 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 23.63 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 66.67 tokens</li><li>max: 313 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                      | positive                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the publication date of the NVIDIA Corporation Annual Report 2024?</code>                                                                                                                                                     | <code> The publication date of the NVIDIA Corporation Annual Report 2024 is February 21st, 2024.</code>                                                                                                                                                                                                                    |
  | <code>What is the filing date of the 10-K report for NVIDIA Corporation in 2004?</code>                                                                                                                                                     | <code> The filing dates of the 10-K reports for NVIDIA Corporation in 2004 are May 20th, March 29th, and April 25th.</code>                                                                                                                                                                                                |
  | <code>What is the purpose of the section of the filing that requires the registrant to indicate whether it has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T?</code> | <code> The purpose of this section is to require the registrant to disclose whether it has submitted all required Interactive Data Files electronically, as mandated by Rule 405 of Regulation S-T, during the preceding 12 months or for the shorter period that the registrant was required to submit such files.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 25
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch       | Step   | Training Loss | bge-base-en_cosine_map@100 |
|:-----------:|:------:|:-------------:|:--------------------------:|
| 0           | 0      | -             | 0.8574                     |
| 0.7111      | 2      | -             | 0.8591                     |
| 1.7778      | 5      | -             | 0.8757                     |
| 2.8444      | 8      | -             | 0.9012                     |
| 3.5556      | 10     | 0.2885        | -                          |
| 3.9111      | 11     | -             | 0.9134                     |
| 4.9778      | 14     | -             | 0.9277                     |
| 5.6889      | 16     | -             | 0.9391                     |
| 6.7556      | 19     | -             | 0.9463                     |
| 7.1111      | 20     | 0.0644        | -                          |
| 7.8222      | 22     | -             | 0.9506                     |
| 8.8889      | 25     | -             | 0.9515                     |
| 9.9556      | 28     | -             | 0.9555                     |
| 10.6667     | 30     | 0.0333        | 0.9560                     |
| 11.7333     | 33     | -             | 0.9551                     |
| 12.8        | 36     | -             | 0.9569                     |
| **13.8667** | **39** | **-**         | **0.9579**                 |
| 14.2222     | 40     | 0.0157        | -                          |
| 14.9333     | 42     | -             | 0.9576                     |
| 16.0        | 45     | -             | 0.9576                     |
| 16.7111     | 47     | -             | 0.9576                     |
| 17.7778     | 50     | 0.0124        | 0.9576                     |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->