File size: 2,576 Bytes
0e4f45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import time
import os
import shutil
import numpy as np
from PIL import Image

import torch


class AvgMeter(object):

    def __init__(self, window=-1):
        self.window = window
        self.reset()

    def reset(self):
        self.avg = 0
        self.sum = 0
        self.cnt = 0
        self.max = -np.inf

        if self.window > 0:
            self.val_arr = np.zeros(self.window)
            self.arr_idx = 0

    def update(self, val, n=1):

        self.cnt += n
        self.max = max(self.max, val)

        if self.window > 0:
            self.val_arr[self.arr_idx] = val
            self.arr_idx = (self.arr_idx + 1) % self.window
            self.avg = self.val_arr.mean()
        else:
            self.sum += val * n
            self.avg = self.sum / self.cnt


class FrameSecondMeter(object):

    def __init__(self):
        self.st = time.time()
        self.fps = None
        self.ed = None
        self.frame_n = 0

    def add_frame_n(self, frame_n):
        self.frame_n += frame_n

    def end(self):
        self.ed = time.time()
        self.fps = self.frame_n / (self.ed - self.st)


def gct(f='l'):
    '''
    get current time
    :param f: 'l' for log, 'f' for file name
    :return: formatted time
    '''
    if f == 'l':
        return time.strftime('%m/%d %H:%M:%S', time.localtime(time.time()))
    elif f == 'f':
        return time.strftime('%m_%d_%H_%M', time.localtime(time.time()))


def save_scripts(path, scripts_to_save=None):
    if not os.path.exists(os.path.join(path, 'scripts')):
        os.makedirs(os.path.join(path, 'scripts'))

    if scripts_to_save is not None:
        for script in scripts_to_save:
            dst_path = os.path.join(path, 'scripts', script)
            try:
                shutil.copy(script, dst_path)
            except IOError:
                os.makedirs(os.path.dirname(dst_path))
                shutil.copy(script, dst_path)


def count_model_size(model):
    return np.sum(np.prod(v.size()) for name, v in model.named_parameters()) / 1e6


def load_image_in_PIL(path, mode='RGB'):
    img = Image.open(path)
    img.load()  # Very important for loading large image
    return img.convert(mode)


def print_mem(info=None):
    if info:
        print(info, end=' ')
    mem_allocated = round(torch.cuda.memory_allocated() / 1048576)
    mem_cached = round(torch.cuda.memory_cached() / 1048576)
    print(f'Mem allocated: {mem_allocated}MB, Mem cached: {mem_cached}MB')


def set_bn_eval(m):
    classname = m.__class__.__name__
    if classname.find('BatchNorm') != -1:
        m.eval()