Update README.md
Browse files
README.md
CHANGED
@@ -96,11 +96,13 @@ from transformers import AutoTokenizer, AutoModel
|
|
96 |
import torch
|
97 |
|
98 |
prompt_encoder_model_name_or_path = "sentence-transformers/all-mpnet-base-v2"
|
99 |
-
prompt_encoder_tokenizer = AutoTokenizer.from_pretrained(prompt_encoder_model_name_or_path)
|
100 |
-
prompt_encoder = AutoModel.from_pretrained(prompt_encoder_model_name_or_path)
|
101 |
-
|
102 |
aptp_model_name_or_path = f"rezashkv/APTP"
|
103 |
aptp_variant = "APTP-Base-CC3M"
|
|
|
|
|
|
|
|
|
|
|
104 |
hyper_net = HyperStructure.from_pretrained(aptp_model_name_or_path, subfolder=f"{aptp_variant}/hypernet")
|
105 |
quantizer = StructureVectorQuantizer.from_pretrained(aptp_model_name_or_path, subfolder=f"{aptp_variant}/quantizer")
|
106 |
|
@@ -110,15 +112,14 @@ prompt_embedding = get_mpnet_embeddings(prompts, prompt_encoder, prompt_encoder_
|
|
110 |
arch_embedding = hyper_net(prompt_embedding)
|
111 |
expert_id = quantizer.get_cosine_sim_min_encoding_indices(arch_embedding)[0].item()
|
112 |
|
113 |
-
sd_model_name_or_path = "stabilityai/stable-diffusion-2-1"
|
114 |
-
|
115 |
unet = UNet2DConditionModelPruned.from_pretrained(aptp_model_name_or_path,
|
116 |
subfolder=f"{aptp_variant}/arch{expert_id}/checkpoint-30000/unet")
|
117 |
-
|
118 |
noise_scheduler = PNDMScheduler.from_pretrained(sd_model_name_or_path, subfolder="scheduler")
|
|
|
119 |
pipeline = StableDiffusionPipeline.from_pretrained(sd_model_name_or_path, unet=unet, scheduler=noise_scheduler)
|
120 |
|
121 |
pipeline.to('cuda')
|
|
|
122 |
generator = torch.Generator(device='cuda').manual_seed(43)
|
123 |
|
124 |
image = pipeline(
|
|
|
96 |
import torch
|
97 |
|
98 |
prompt_encoder_model_name_or_path = "sentence-transformers/all-mpnet-base-v2"
|
|
|
|
|
|
|
99 |
aptp_model_name_or_path = f"rezashkv/APTP"
|
100 |
aptp_variant = "APTP-Base-CC3M"
|
101 |
+
sd_model_name_or_path = "stabilityai/stable-diffusion-2-1"
|
102 |
+
|
103 |
+
prompt_encoder = AutoModel.from_pretrained(prompt_encoder_model_name_or_path)
|
104 |
+
prompt_encoder_tokenizer = AutoTokenizer.from_pretrained(prompt_encoder_model_name_or_path)
|
105 |
+
|
106 |
hyper_net = HyperStructure.from_pretrained(aptp_model_name_or_path, subfolder=f"{aptp_variant}/hypernet")
|
107 |
quantizer = StructureVectorQuantizer.from_pretrained(aptp_model_name_or_path, subfolder=f"{aptp_variant}/quantizer")
|
108 |
|
|
|
112 |
arch_embedding = hyper_net(prompt_embedding)
|
113 |
expert_id = quantizer.get_cosine_sim_min_encoding_indices(arch_embedding)[0].item()
|
114 |
|
|
|
|
|
115 |
unet = UNet2DConditionModelPruned.from_pretrained(aptp_model_name_or_path,
|
116 |
subfolder=f"{aptp_variant}/arch{expert_id}/checkpoint-30000/unet")
|
|
|
117 |
noise_scheduler = PNDMScheduler.from_pretrained(sd_model_name_or_path, subfolder="scheduler")
|
118 |
+
|
119 |
pipeline = StableDiffusionPipeline.from_pretrained(sd_model_name_or_path, unet=unet, scheduler=noise_scheduler)
|
120 |
|
121 |
pipeline.to('cuda')
|
122 |
+
|
123 |
generator = torch.Generator(device='cuda').manual_seed(43)
|
124 |
|
125 |
image = pipeline(
|