rhlc commited on
Commit
a017d74
1 Parent(s): 3fa75c8

Model save

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/vit-msn-small
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-msn-small-finetuned-alzheimers
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8625
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-msn-small-finetuned-alzheimers
32
+
33
+ This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3612
36
+ - Accuracy: 0.8625
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 256
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | 0.9297 | 0.9778 | 22 | 0.8769 | 0.6156 |
71
+ | 0.8601 | 2.0 | 45 | 0.7799 | 0.6344 |
72
+ | 0.7954 | 2.9778 | 67 | 0.7197 | 0.6828 |
73
+ | 0.7468 | 4.0 | 90 | 0.7003 | 0.6734 |
74
+ | 0.6935 | 4.9778 | 112 | 0.6064 | 0.7547 |
75
+ | 0.6271 | 6.0 | 135 | 0.5648 | 0.7688 |
76
+ | 0.5622 | 6.9778 | 157 | 0.4824 | 0.8094 |
77
+ | 0.4815 | 8.0 | 180 | 0.4012 | 0.8609 |
78
+ | 0.4771 | 8.9778 | 202 | 0.3799 | 0.8562 |
79
+ | 0.4171 | 9.7778 | 220 | 0.3612 | 0.8625 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.40.0
85
+ - Pytorch 2.2.1+cu121
86
+ - Datasets 2.19.0
87
+ - Tokenizers 0.19.1