--- license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-finetuned-alzheimers results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8625 --- # vit-msn-small-finetuned-alzheimers This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3612 - Accuracy: 0.8625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9297 | 0.9778 | 22 | 0.8769 | 0.6156 | | 0.8601 | 2.0 | 45 | 0.7799 | 0.6344 | | 0.7954 | 2.9778 | 67 | 0.7197 | 0.6828 | | 0.7468 | 4.0 | 90 | 0.7003 | 0.6734 | | 0.6935 | 4.9778 | 112 | 0.6064 | 0.7547 | | 0.6271 | 6.0 | 135 | 0.5648 | 0.7688 | | 0.5622 | 6.9778 | 157 | 0.4824 | 0.8094 | | 0.4815 | 8.0 | 180 | 0.4012 | 0.8609 | | 0.4771 | 8.9778 | 202 | 0.3799 | 0.8562 | | 0.4171 | 9.7778 | 220 | 0.3612 | 0.8625 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1