Update README.md
Browse files
README.md
CHANGED
@@ -1,73 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
library_name: transformers
|
6 |
-
pipeline_tag: image-text-to-text
|
7 |
-
tags:
|
8 |
-
- multimodal
|
9 |
-
- aria
|
10 |
-
---
|
11 |
-
<!-- <p align="center">
|
12 |
-
<br>Aria</br>
|
13 |
-
</p> -->
|
14 |
-
|
15 |
-
This is a fork of the [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) model. The only modification is replacing [grouped GEMM](https://github.com/tgale96/grouped_gemm) with a sequential MLP. In this configuration, each expert is implemented as a `torch.nn.Linear` layer executed in sequence. This adjustment simplifies quantization with current open-source libraries, which are optimized for `nn.Linear` layers.
|
16 |
-
|
17 |
-
While the sequential MLP approach aids in easier quantization, using grouped GEMM provides the advantage of faster
|
18 |
-
|
19 |
-
|
20 |
-
## Quick Start
|
21 |
-
### Installation
|
22 |
-
```
|
23 |
-
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
|
24 |
-
pip install flash-attn --no-build-isolation
|
25 |
-
```
|
26 |
-
|
27 |
-
### Inference
|
28 |
-
|
29 |
-
```python
|
30 |
-
import requests
|
31 |
-
import torch
|
32 |
-
from PIL import Image
|
33 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
34 |
-
|
35 |
-
model_id_or_path = "rhymes-ai/Aria-sequential_mlp"
|
36 |
-
|
37 |
-
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
38 |
-
|
39 |
-
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
40 |
-
|
41 |
-
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
42 |
-
|
43 |
-
image = Image.open(requests.get(image_path, stream=True).raw)
|
44 |
-
|
45 |
-
messages = [
|
46 |
-
{
|
47 |
-
"role": "user",
|
48 |
-
"content": [
|
49 |
-
{"text": None, "type": "image"},
|
50 |
-
{"text": "what is the image?", "type": "text"},
|
51 |
-
],
|
52 |
-
}
|
53 |
-
]
|
54 |
-
|
55 |
-
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
56 |
-
inputs = processor(text=text, images=image, return_tensors="pt")
|
57 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
58 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
59 |
-
|
60 |
-
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
61 |
-
output = model.generate(
|
62 |
-
**inputs,
|
63 |
-
max_new_tokens=500,
|
64 |
-
stop_strings=["<|im_end|>"],
|
65 |
-
tokenizer=processor.tokenizer,
|
66 |
-
do_sample=True,
|
67 |
-
temperature=0.9,
|
68 |
-
)
|
69 |
-
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
70 |
-
result = processor.decode(output_ids, skip_special_tokens=True)
|
71 |
-
|
72 |
-
print(result)
|
73 |
```
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: image-text-to-text
|
7 |
+
tags:
|
8 |
+
- multimodal
|
9 |
+
- aria
|
10 |
+
---
|
11 |
+
<!-- <p align="center">
|
12 |
+
<br>Aria</br>
|
13 |
+
</p> -->
|
14 |
+
|
15 |
+
This is a fork of the [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) model. The only modification is replacing [grouped GEMM](https://github.com/tgale96/grouped_gemm) with a sequential MLP. In this configuration, each expert is implemented as a `torch.nn.Linear` layer executed in sequence. This adjustment simplifies quantization with current open-source libraries, which are optimized for `nn.Linear` layers.
|
16 |
+
|
17 |
+
While the sequential MLP approach aids in easier quantization, using grouped GEMM provides the advantage of faster training speed.
|
18 |
+
|
19 |
+
|
20 |
+
## Quick Start
|
21 |
+
### Installation
|
22 |
+
```
|
23 |
+
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
|
24 |
+
pip install flash-attn --no-build-isolation
|
25 |
+
```
|
26 |
+
|
27 |
+
### Inference
|
28 |
+
|
29 |
+
```python
|
30 |
+
import requests
|
31 |
+
import torch
|
32 |
+
from PIL import Image
|
33 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
34 |
+
|
35 |
+
model_id_or_path = "rhymes-ai/Aria-sequential_mlp"
|
36 |
+
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
38 |
+
|
39 |
+
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
40 |
+
|
41 |
+
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
42 |
+
|
43 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
44 |
+
|
45 |
+
messages = [
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": [
|
49 |
+
{"text": None, "type": "image"},
|
50 |
+
{"text": "what is the image?", "type": "text"},
|
51 |
+
],
|
52 |
+
}
|
53 |
+
]
|
54 |
+
|
55 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
56 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
57 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
58 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
59 |
+
|
60 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
61 |
+
output = model.generate(
|
62 |
+
**inputs,
|
63 |
+
max_new_tokens=500,
|
64 |
+
stop_strings=["<|im_end|>"],
|
65 |
+
tokenizer=processor.tokenizer,
|
66 |
+
do_sample=True,
|
67 |
+
temperature=0.9,
|
68 |
+
)
|
69 |
+
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
70 |
+
result = processor.decode(output_ids, skip_special_tokens=True)
|
71 |
+
|
72 |
+
print(result)
|
73 |
```
|