# Copyright 2024 Rhymes AI. All rights reserved. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from torch import nn from transformers import PreTrainedModel from transformers.cache_utils import Cache from transformers.modeling_outputs import ModelOutput from transformers.utils import logging from .configuration_aria import AriaConfig from .moe_lm import AriaMoELMForCausalLM from .projector import AriaProjector from .vision_encoder import AriaVisionModel logger = logging.get_logger(__name__) class AriaPretrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = AriaConfig base_model_prefix = "model" _no_split_modules = [] supports_gradient_checkpointing = True _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True @property def _supports_sdpa(self): """ Retrieve language_model's attribute to check whether the model supports SDPA (Scaled Dot Product Attention) or not. """ return self.language_model._supports_sdpa @dataclass # Copied from transformers.models.llava.modeling_llava.LlavaCausalLMOutputWithPast with Llava->Aria class AriaCausalLMOutputWithPast(ModelOutput): """ Base class for Aria causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None def build_mm_projector(config: AriaConfig): """ Builds and returns an AriaProjector instance based on the provided configuration. Args: config (AriaConfig): The configuration object containing necessary parameters. Returns: AriaProjector: An instance of the AriaProjector class. """ return AriaProjector( patch_to_query_dict=config.projector_patch_to_query_dict, embed_dim=config.vision_config.hidden_size, num_heads=config.vision_config.num_attention_heads, kv_dim=config.vision_config.hidden_size, ff_dim=config.text_config.hidden_size, output_dim=config.text_config.hidden_size, ) # adapted from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration class AriaForConditionalGeneration(AriaPretrainedModel): """ Aria model for conditional generation tasks. This model combines a vision tower, a multi-modal projector, and a language model to perform tasks that involve both image and text inputs. """ def __init__(self, config: AriaConfig): super().__init__(config) self.vision_tower = AriaVisionModel(config.vision_config) self.multi_modal_projector = build_mm_projector(config) self.vocab_size = config.text_config.vocab_size self.language_model = AriaMoELMForCausalLM(config.text_config) self.pad_token_id = ( self.config.pad_token_id if self.config.pad_token_id is not None else -1 ) self.post_init() def freeze_vit(self): """Freeze the parameters of the vision tower.""" for param in self.vision_tower.parameters(): param.requires_grad = False def freeze_projector(self): """Freeze the parameters of the multi-modal projector.""" for param in self.multi_modal_projector.parameters(): param.requires_grad = False def freeze_llm(self): """Freeze the parameters of the language model.""" for param in self.language_model.parameters(): param.requires_grad = False def get_input_embeddings(self) -> nn.Module: """Retrieve the input embeddings from the language model.""" return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): """Set the input embeddings for the language model.""" self.language_model.set_input_embeddings(value) def set_moe_z_loss_coeff(self, value): """ Set the z-loss coefficient for Mixture of Experts (MoE) models. Args: value: The z-loss coefficient value to set. """ self.language_model.set_z_loss_coeff(value) def set_moe_aux_loss_coeff(self, value): """ Set the auxiliary loss coefficient for Mixture of Experts (MoE) models. Args: value: The auxiliary loss coefficient value to set. """ self.language_model.set_aux_loss_coeff(value) # copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration def _merge_input_ids_with_image_features( self, image_features, inputs_embeds, input_ids, attention_mask, labels ): """ Merge input IDs with image features to create a combined input representation. This method handles the complex logic of interleaving text and image tokens, adjusting attention masks and labels accordingly. Args: image_features (torch.Tensor): Processed image features. inputs_embeds (torch.Tensor): Text input embeddings. input_ids (torch.Tensor): Input token IDs. attention_mask (torch.Tensor): Attention mask for input tokens. labels (torch.Tensor, optional): Labels for language modeling. Returns: tuple: Contains the merged embeddings, updated attention mask, updated labels, and position IDs. """ num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum( input_ids[:, -1] == torch.tensor(self.pad_token_id) ) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == self.config.image_token_index num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_embed_dim = ( num_special_image_tokens.max() * (num_image_patches - 1) ) + sequence_length batch_indices, non_image_indices = torch.where( input_ids != self.config.image_token_index ) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = ( torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 ) nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device, ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device, ) if labels is not None: final_labels = torch.full( (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device, ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[ batch_indices, non_image_indices ] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[ batch_indices, non_image_indices ] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[ batch_indices, non_image_indices ] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device, ) image_to_overwrite[batch_indices, text_to_overwrite] = False image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[ :, None ].to(target_device) if image_to_overwrite.sum() != image_features.shape[:-1].numel(): raise ValueError( f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = ( image_features.contiguous().reshape(-1, embed_dim).to(target_device) ) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_( (final_attention_mask == 0), 1 ) # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) indices_to_mask = new_token_positions[batch_indices, pad_indices] final_embedding[batch_indices, indices_to_mask] = 0 if labels is None: final_labels = None return final_embedding, final_attention_mask, final_labels, position_ids def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, pixel_mask: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, AriaCausalLMOutputWithPast]: """ Forward pass of the AriaForConditionalGeneration model. This method processes both text and image inputs, merges them if necessary, and generates output using the language model. Args: input_ids (torch.LongTensor, optional): Input token ids. pixel_values (torch.FloatTensor, optional): Pixel values of the images. pixel_mask (torch.LongTensor, optional): Mask for the pixel values. attention_mask (torch.Tensor, optional): Attention mask. position_ids (torch.LongTensor, optional): Position ids. past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing. inputs_embeds (torch.FloatTensor, optional): Input embeddings. labels (torch.LongTensor, optional): Labels for computing the language modeling loss. use_cache (bool, optional): Whether to use the model's cache mechanism. output_attentions (bool, optional): Whether to output attention weights. output_hidden_states (bool, optional): Whether to output hidden states. return_dict (bool, optional): Whether to return a ModelOutput object. Returns: Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs. """ output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if inputs_embeds is None: # 1. Extra the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1: image_outputs, image_attn_mask = self.vision_tower( pixel_values, pixel_mask=pixel_mask, ) selected_image_feature = image_outputs.last_hidden_state image_features = self.multi_modal_projector( selected_image_feature, attn_mask=image_attn_mask ) inputs_embeds = inputs_embeds.to(image_features.dtype) ( inputs_embeds, attention_mask, labels, position_ids, ) = self._merge_input_ids_with_image_features( image_features, inputs_embeds, input_ids, attention_mask, labels ) # In case input_ids.shape[1] == 1 & pixel_values != None & past_key_values != None, we are in the case of # generation with cache elif ( past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1 ): # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors # such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where( first_layer_past_key_value.float().sum(-2) == 0 ) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat( (extended_attention_mask, attention_mask[:, -target_length:]), dim=1 ) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][ shift_attention_mask.to(logits.device) != 0 ].contiguous() shift_labels = labels[..., 1:][ shift_attention_mask.to(labels.device) != 0 ].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device), ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return AriaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, pixel_mask=None, attention_mask=None, **kwargs, ): """ Prepare inputs for generation step. This method prepares the inputs for the generation step, handling both text and image inputs, and managing the model's cache mechanism. Args: input_ids (torch.LongTensor): Input token ids. past_key_values (Cache or List[torch.FloatTensor], optional): Past key values for efficient processing. inputs_embeds (torch.FloatTensor, optional): Input embeddings. pixel_values (torch.FloatTensor, optional): Pixel values of the images. pixel_mask (torch.LongTensor, optional): Mask for the pixel values. attention_mask (torch.Tensor, optional): Attention mask. **kwargs: Additional keyword arguments. Returns: dict: A dictionary containing the prepared inputs for the generation step. """ if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if ( attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1] ): input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[ :, -(cache_length + input_ids.shape[1]) : ] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, "pixel_mask": pixel_mask, } ) return model_inputs