End of training
Browse files- README.md +25 -25
- logs/events.out.tfevents.1703747876.dlmachine2.187596.0 +2 -2
- model.safetensors +1 -1
- tokenizer.json +16 -2
README.md
CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Answer: {'precision': 0.
|
20 |
-
- Header: {'precision': 0.
|
21 |
-
- Question: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -52,23 +52,23 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
56 |
-
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7235
|
19 |
+
- Answer: {'precision': 0.6962719298245614, 'recall': 0.7849196538936959, 'f1': 0.73794305636258, 'number': 809}
|
20 |
+
- Header: {'precision': 0.27692307692307694, 'recall': 0.3025210084033613, 'f1': 0.2891566265060241, 'number': 119}
|
21 |
+
- Question: {'precision': 0.7558039552880481, 'recall': 0.8253521126760563, 'f1': 0.789048473967684, 'number': 1065}
|
22 |
+
- Overall Precision: 0.7029
|
23 |
+
- Overall Recall: 0.7777
|
24 |
+
- Overall F1: 0.7384
|
25 |
+
- Overall Accuracy: 0.7998
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 1.7228 | 1.0 | 10 | 1.5183 | {'precision': 0.060676779463243874, 'recall': 0.06427688504326329, 'f1': 0.062424969987995196, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3057324840764331, 'recall': 0.4056338028169014, 'f1': 0.3486682808716707, 'number': 1065} | 0.2132 | 0.2428 | 0.2271 | 0.4422 |
|
58 |
+
| 1.3399 | 2.0 | 20 | 1.1666 | {'precision': 0.27170868347338933, 'recall': 0.23980222496909764, 'f1': 0.25476034143138543, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45522949586155004, 'recall': 0.568075117370892, 'f1': 0.5054302422723475, 'number': 1065} | 0.3911 | 0.4009 | 0.3959 | 0.6011 |
|
59 |
+
| 1.04 | 3.0 | 30 | 0.9328 | {'precision': 0.47839195979899496, 'recall': 0.588380716934487, 'f1': 0.5277161862527716, 'number': 809} | {'precision': 0.06818181818181818, 'recall': 0.025210084033613446, 'f1': 0.03680981595092025, 'number': 119} | {'precision': 0.6219201359388276, 'recall': 0.6873239436619718, 'f1': 0.6529884032114184, 'number': 1065} | 0.5465 | 0.6076 | 0.5754 | 0.7133 |
|
60 |
+
| 0.8105 | 4.0 | 40 | 0.7992 | {'precision': 0.5817060637204522, 'recall': 0.6996291718170581, 'f1': 0.6352413019079686, 'number': 809} | {'precision': 0.0963855421686747, 'recall': 0.06722689075630252, 'f1': 0.07920792079207921, 'number': 119} | {'precision': 0.6542904290429042, 'recall': 0.7446009389671362, 'f1': 0.696530522617479, 'number': 1065} | 0.6027 | 0.6859 | 0.6416 | 0.7516 |
|
61 |
+
| 0.6523 | 5.0 | 50 | 0.7333 | {'precision': 0.6176470588235294, 'recall': 0.7527812113720643, 'f1': 0.6785515320334262, 'number': 809} | {'precision': 0.20430107526881722, 'recall': 0.15966386554621848, 'f1': 0.1792452830188679, 'number': 119} | {'precision': 0.6836393989983306, 'recall': 0.7690140845070422, 'f1': 0.7238179407865665, 'number': 1065} | 0.6355 | 0.7260 | 0.6778 | 0.7724 |
|
62 |
+
| 0.5591 | 6.0 | 60 | 0.7152 | {'precision': 0.6452304394426581, 'recall': 0.7441285537700866, 'f1': 0.6911595866819749, 'number': 809} | {'precision': 0.2222222222222222, 'recall': 0.18487394957983194, 'f1': 0.2018348623853211, 'number': 119} | {'precision': 0.6821086261980831, 'recall': 0.8018779342723005, 'f1': 0.7371601208459214, 'number': 1065} | 0.6471 | 0.7416 | 0.6911 | 0.7845 |
|
63 |
+
| 0.494 | 7.0 | 70 | 0.6953 | {'precision': 0.652542372881356, 'recall': 0.761433868974042, 'f1': 0.7027952082144895, 'number': 809} | {'precision': 0.2184873949579832, 'recall': 0.2184873949579832, 'f1': 0.2184873949579832, 'number': 119} | {'precision': 0.7113316790736146, 'recall': 0.8075117370892019, 'f1': 0.7563764291996481, 'number': 1065} | 0.6611 | 0.7536 | 0.7043 | 0.7893 |
|
64 |
+
| 0.4345 | 8.0 | 80 | 0.6955 | {'precision': 0.6485042735042735, 'recall': 0.7503090234857849, 'f1': 0.695702005730659, 'number': 809} | {'precision': 0.23809523809523808, 'recall': 0.25210084033613445, 'f1': 0.24489795918367344, 'number': 119} | {'precision': 0.7281632653061224, 'recall': 0.8375586854460094, 'f1': 0.7790393013100436, 'number': 1065} | 0.6686 | 0.7672 | 0.7145 | 0.7936 |
|
65 |
+
| 0.3786 | 9.0 | 90 | 0.7151 | {'precision': 0.6762513312034079, 'recall': 0.7849196538936959, 'f1': 0.7265446224256292, 'number': 809} | {'precision': 0.24817518248175183, 'recall': 0.2857142857142857, 'f1': 0.265625, 'number': 119} | {'precision': 0.7582515611061552, 'recall': 0.7981220657276995, 'f1': 0.7776761207685269, 'number': 1065} | 0.6914 | 0.7622 | 0.7251 | 0.7907 |
|
66 |
+
| 0.3465 | 10.0 | 100 | 0.7036 | {'precision': 0.6802197802197802, 'recall': 0.765142150803461, 'f1': 0.7201861547411287, 'number': 809} | {'precision': 0.2777777777777778, 'recall': 0.29411764705882354, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7470588235294118, 'recall': 0.8347417840375587, 'f1': 0.7884700665188471, 'number': 1065} | 0.6932 | 0.7742 | 0.7315 | 0.8004 |
|
67 |
+
| 0.3289 | 11.0 | 110 | 0.7109 | {'precision': 0.6814734561213435, 'recall': 0.7775030902348579, 'f1': 0.7263279445727483, 'number': 809} | {'precision': 0.2692307692307692, 'recall': 0.29411764705882354, 'f1': 0.28112449799196787, 'number': 119} | {'precision': 0.7449832775919732, 'recall': 0.8366197183098592, 'f1': 0.7881468376824414, 'number': 1065} | 0.6914 | 0.7802 | 0.7331 | 0.7950 |
|
68 |
+
| 0.3066 | 12.0 | 120 | 0.7106 | {'precision': 0.6941694169416942, 'recall': 0.7799752781211372, 'f1': 0.7345750873108267, 'number': 809} | {'precision': 0.2868217054263566, 'recall': 0.31092436974789917, 'f1': 0.2983870967741935, 'number': 119} | {'precision': 0.7540425531914894, 'recall': 0.831924882629108, 'f1': 0.7910714285714286, 'number': 1065} | 0.7022 | 0.7797 | 0.7389 | 0.7980 |
|
69 |
+
| 0.2914 | 13.0 | 130 | 0.7253 | {'precision': 0.6913849509269356, 'recall': 0.7836835599505563, 'f1': 0.7346465816917729, 'number': 809} | {'precision': 0.2642857142857143, 'recall': 0.31092436974789917, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7402707275803723, 'recall': 0.8215962441314554, 'f1': 0.778816199376947, 'number': 1065} | 0.6905 | 0.7757 | 0.7306 | 0.7956 |
|
70 |
+
| 0.2751 | 14.0 | 140 | 0.7191 | {'precision': 0.6818181818181818, 'recall': 0.7787391841779975, 'f1': 0.7270628967109058, 'number': 809} | {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119} | {'precision': 0.7474489795918368, 'recall': 0.8253521126760563, 'f1': 0.784471218206158, 'number': 1065} | 0.6925 | 0.7752 | 0.7315 | 0.7991 |
|
71 |
+
| 0.2769 | 15.0 | 150 | 0.7235 | {'precision': 0.6962719298245614, 'recall': 0.7849196538936959, 'f1': 0.73794305636258, 'number': 809} | {'precision': 0.27692307692307694, 'recall': 0.3025210084033613, 'f1': 0.2891566265060241, 'number': 119} | {'precision': 0.7558039552880481, 'recall': 0.8253521126760563, 'f1': 0.789048473967684, 'number': 1065} | 0.7029 | 0.7777 | 0.7384 | 0.7998 |
|
72 |
|
73 |
|
74 |
### Framework versions
|
logs/events.out.tfevents.1703747876.dlmachine2.187596.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b587e12aa709a98fedb79937aed771998424cac8cc497792186664050085457
|
3 |
+
size 14681
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:300dc4dffb5c7fe1e72693741e20d6c8d42bf68820038f53df5d776539919ec5
|
3 |
size 450558212
|
tokenizer.json
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
+
"padding": {
|
10 |
+
"strategy": {
|
11 |
+
"Fixed": 512
|
12 |
+
},
|
13 |
+
"direction": "Right",
|
14 |
+
"pad_to_multiple_of": null,
|
15 |
+
"pad_id": 0,
|
16 |
+
"pad_type_id": 0,
|
17 |
+
"pad_token": "[PAD]"
|
18 |
+
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|