File size: 2,016 Bytes
bb62564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b2044
bb62564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b2044
 
 
 
 
 
 
 
bb62564
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: papluca/xlm-roberta-base-language-detection
tags:
- Italian
- legal ruling
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: ribesstefano/RuleBert-v0.3-k0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ribesstefano/RuleBert-v0.3-k0

This model is a fine-tuned version of [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3650
- F1: 0.4972
- Roc Auc: 0.6720
- Accuracy: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Accuracy | F1     | Validation Loss | Roc Auc |
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:-------:|
| 0.422         | 0.06  | 250  | 0.0      | 0.4972 | 0.3994          | 0.6720  |
| 0.3606        | 0.12  | 500  | 0.3604   | 0.4972 | 0.6720          | 0.0     |
| 0.3333        | 0.19  | 750  | 0.3548   | 0.4972 | 0.6720          | 0.0     |
| 0.3304        | 0.25  | 1000 | 0.3563   | 0.4972 | 0.6720          | 0.0     |
| 0.3416        | 0.31  | 1250 | 0.3628   | 0.4972 | 0.6720          | 0.0     |
| 0.3558        | 0.37  | 1500 | 0.3650   | 0.4972 | 0.6720          | 0.0     |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0