File size: 29,029 Bytes
c846e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:154
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: Who will be introducing the first and second Joker movies at the
    festival?
  sentences:
  - '13 Apr 2025Photo: Marshmallow Laser FeastSoil – it’s not something you really
    think about, unless you’re doing the gardening. But this new exhibition at Somerset
    House will change all that, shining a light on its important role in our world,
    including the part it plays in our planet’s future. Top artists, writers and scientists
    from across the globe are all involved in the thought-provoking exploration, which
    aims to stop you thinking of soil as mere dirt and start considering it as something
    far more powerful instead.Read moreBuy ticket24. Enjoy stunning views of the River
    Thames with three courses at Sea ContainersNiall Clutton'
  - favourite movies  the soundtracks. London Soundtrack Festival puts the scores
    front and centre in March 2025, with a series of screenings, talks and performances
    celebrating the musicians who make Hollywood sound so exciting, tense and emotional.
    Highlights include Hildur Guðnadóttir introducing the first and second Joker movies
    and, later in the programme, holding her own concert, David Cronenberg and Howard
    Shore in conversation, screenings of Charlie Chaplin’s Modern Times, The Silence
    of the Lambs and Eighth Grade with live scores, a day-long celebration of video
    game music at The Roundhouse ‘Great Movie Songs with Anne Dudley & Friends’ featuring
    guest appearances from the likes of the Pet Shop Boys’ Neil Tennant and Jake Shears
    of
  - Peter Walker Sculptor and David Harper ComposerSt Paul’s is about to get lit. In
    February, the cathedral will be transformed via a stunning immersive light and
    sound show. ‘Luminous’ by art collective Luxmuralis will animate the interior
    of the building with illuminations and soundscapes inspired by its history, collections
    and archives. Previously, Luxmuralis has created shows at Westminster Abbey, Durham
    Cathedral and Oxford University. The company was also behind the ‘Poppy Fields’
    display at the Tower of London in October.
- source_sentence: What is the significance of Haddadi in the given context?
  sentences:
  - It’s been almost a decade since Red Bull Culture Clash last took place in London,
    but finally, it’s making its return in 2025, The epic music battle, inspired by
    Jamaican sound clash culture, will see four crews armed with their finest dubplates
    go head-to-head, delivering the best of the electronic, UK rap, Afro, and Caribbean
    music scenes. Only one can be crowned the winner, though, and take home the Red
    Bull Culture Clash trophy, with the victor. The likes of Boy Better Know, A$AP
    Mob and Rebel Sound have previously competed at the legendary competition, as
    well as special guests like J Hus, Stormzy, and Ice Kid, so crowds can expect
    some pretty special things from its return, which takes place at Drumsheds in
    March. Read moreBuy
  - Haddadi
  - The Irish really know how to celebrate, so when it comes to St Patrick’s Day in
    London, the city’s Irish community has no problem showing us how it’s done. A
    day to celebrate the patron saint of Ireland, the occasion is always one big welcoming
    bash. Expect lots of dancing, hearty traditional dishes, a huge parade and as
    many pints as you can handle. The Mayor of London’s annual St Patrick’s Day Festival
    celebration will take place on Sunday March 16  a day ahead of the official holiday
     and, as usual, thousands of revellers are expected to watch the parade wend
    its way through central London, while there’ll also be plenty more St Patrick’s
    Day parties and events to check out around the city. We’ll be rounding up the
    best of them for you
- source_sentence: How does Renée Zellweger's portrayal of Bridget Jones evolve in
    "Mad About the Boy" compared to her earlier performances?
  sentences:
  - "From St Paddy’s to Mothering Sunday, Pancake Day to International Women’s Day, the\
    \ third month of the year packs in a whole host of big celebrations. \nAnd it’s\
    \ also an especially great month for culture vultures. There are a host of film\
    \ festivals happening around the city, from BFI Flare and the inaugural London\
    \ Soundtrack Festival to Kinoteka, Cinema Made in Italy and the Banff Mountain\
    \ Film Festival. \nAnd there’s also Deptford Literature Festival, the Young Barbican\
    \ Takeover Festival, music conference series AVA London and the Other Art Fair. \n\
    Find out about all of these, and much more, in our roundup of the best things\
    \ to do in London over the month."
  - ‘Fourquels’ are usually where film franchises start to flirt with rock bottom,
    so it’s a joy to report that Mad About the Boy is comfortably the best Bridget
    Jones outing since Bridget Jones’s Diary. For Renée Zellweger’s still klutzy but
    now wiser Bridge, living in cosy Hampstead, the singleton Borough era is a distant
    memory. Ciggies and Chardonnay have been dispensed with replaced with a big dose
    of lingering grief for lawyer Mark Darcy (Colin Firth). It says everything for
    the script (co-written by Helen Fielding, Dan Mazer and Abi Morgan) that even
    Daniel Cleaver, now entering his own Jurassic era and a bit sad about it, gets
    an affecting arc here. The plot will surprise no one, but it barely matters 
    this is Bridget’s journey of
  - The Six Nations rugby tournament is back for 2025, taking over boozers, beer gardens
    and outdoor screens across London most weekends up until Saturday March 15. And
    you could just watch on your telly at home. But as the annual competition reaches
    its final stages, you might  prefer to catch every scrimmage, try and conversion
    in a lively atmosphere with a nice freshly-poured Guinness in hand. So head to
    one of the rugby pubs, bars, beer halls, markets and social clubs listed here,
    where you’ll find free-flowing pints, special guest appearances and countless
    renditions of ‘Swing Low, Sweet Chariot’.Read moreAdvertising11. Celebrate the
    matriarchs in your life on Mother’s Day in LondonThings to doMums deserve high
    praise all year round,
- source_sentence: Who is mentioned in relation to getting Guinnesses for the event?
  sentences:
  - 'you agree to our Terms of Use and Privacy Policy and consent to receive emails
    from Time Out about news, events, offers and partner promotions.SubscribeSearchNewsThings
    to DoFood & DrinkArtTheatreTravelHalf-TermOffersSeparatorKidsAttractionsMuseumsFilmMusicNightlifeHotelsLondonLondonNew
    YorkParisChicagoLos AngelesLisbonHong KongSydneyMelbournePortoSingaporeBarcelonaMadridMontréalBostonMiamiWorldwideCloseNewsThings
    to DoFood & DrinkArtTheatreTravelHalf-TermOffersMoreKidsAttractionsMuseumsFilmMusicNightlifeHotelsLondonLondonNew
    YorkParisChicagoLos AngelesLisbonHong KongSydneyMelbournePortoSingaporeBarcelonaMadridMontréalBostonMiamiWorldwideSubscribeOffers
    EnglishEnglishEspañolinstagramtiktokfacebooktwitteryoutubePhotograph: Steve Beech
    /'
  - Haddadi
  - 'Shields returning.Read moreBuy ticket2. Get the Guinnesses in for St Patrick’s
    Day in LondonThings to doPhotograph: Sandor Szmutko'
- source_sentence: What platforms are mentioned in the context for social media engagement?
  sentences:
  - out for your first newsletter in your inbox soon!instagramtiktokfacebooktwitteryoutubeAbout
    usPress officeInvestor relationsOur awardsWork for Time OutEditorial guidelinesPrivacy
    noticeDo not sell my informationCookie policyAccessibility statementTerms of useModern
    slavery statementManage cookiesContact usGet ListedClaim your listingTime Out
    Offers FAQAdvertisingTime Out MarketTime Out productsTime Out OffersTime Out WorldwideMoviesRestaurantsSite
    Map© 2025 Time Out England Limited and affiliated companies owned by Time Out
    Group Plc. All rights reserved. Time Out is a registered trademark of Time Out
    Digital Limited.
  - 'You’ve probably heard all about Versailles’ dazzling Hall of Mirrors and its
    gorgeous, well-manicured gardens – maybe you’ve even seen them IRL. But do you
    know about the role the French royal court played in not just spreading scientific
    knowledge, but making it fashionable, too? The Science Museum’s latest exhibition,
    ‘Versailles: Science And Splendour’, will uncover that lesser-talked-about side
    of the palace’s history, diving into the royal family’s relationship with science,
    women’s impact on medicine, philosophy and botany at the royal court, and showcasing
    more than 100 items that reinforce those stories – many of which have never been
    displayed in the UK before.'
  - 'Steve Beech / ShutterstockPhotograph: Steve Beech / ShutterstockLondon events
    in March 2025Our guide to the best events, festivals, workshops, exhibitions and
    things to do throughout March 2025 in LondonWednesday 12 February 2025ShareCopy
    LinkFacebookTwitterPinterestEmailWhatsAppWritten by Rosie HewitsonThings to Do
    Editor, LondonAdvertisingThe days are getting gradually lighter, the snowdrops
    and crocuses have arrived in London’s park, and London’s cultural scene has burst
    into life after a mid-winter lull. It can only mean one thing; March is right
    around the corner.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.8846153846153846
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8846153846153846
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33333333333333337
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8846153846153846
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9574149715659375
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9423076923076923
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9423076923076923
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ric9176/cjo-ft-v0")
# Run inference
sentences = [
    'What platforms are mentioned in the context for social media engagement?',
    'out for your first newsletter in your inbox soon!instagramtiktokfacebooktwitteryoutubeAbout usPress officeInvestor relationsOur awardsWork for Time OutEditorial guidelinesPrivacy noticeDo not sell my informationCookie policyAccessibility statementTerms of useModern slavery statementManage cookiesContact usGet ListedClaim your listingTime Out Offers FAQAdvertisingTime Out MarketTime Out productsTime Out OffersTime Out WorldwideMoviesRestaurantsSite Map© 2025 Time Out England Limited and affiliated companies owned by Time Out Group Plc. All rights reserved. Time Out is a registered trademark of Time Out Digital Limited.',
    'Steve Beech / ShutterstockPhotograph: Steve Beech / ShutterstockLondon events in March 2025Our guide to the best events, festivals, workshops, exhibitions and things to do throughout March 2025 in LondonWednesday 12 February 2025ShareCopy LinkFacebookTwitterPinterestEmailWhatsAppWritten by Rosie HewitsonThings to Do Editor, LondonAdvertisingThe days are getting gradually lighter, the snowdrops and crocuses have arrived in London’s park, and London’s cultural scene has burst into life after a mid-winter lull. It can only mean one thing; March is right around the corner.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8846     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.8846     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.8846     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.9574** |
| cosine_mrr@10       | 0.9423     |
| cosine_map@100      | 0.9423     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 154 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 154 samples:
  |         | sentence_0                                                                        | sentence_1                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 18.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 129.57 tokens</li><li>max: 226 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                 | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What types of events and activities are highlighted for the weekend in London?</code>                | <code>30 Wonderful Things To Do This Weekend in London – weekend events and activities in LondonGo to the contentGo to the footerNo thanksSubscribe🙌Awesome, you're subscribed!Thanks for subscribing! Look out for your first newsletter in your inbox soon!Get us in your inboxSign up to our newsletter for the latest and greatest from your city and beyondEnter email addressDéjà vu! We already have this email. Try another?By entering your email address you agree to our Terms of Use and Privacy Policy and consent to receive emails from Time Out about news, events, offers and partner promotions.No thanks Awesome, you're subscribed!Thanks for subscribing! Look out for your first newsletter in your inbox soon!The best of London for free.Sign up for</code> |
  | <code>How can individuals stay updated on the latest happenings in London according to the context?</code> | <code>30 Wonderful Things To Do This Weekend in London – weekend events and activities in LondonGo to the contentGo to the footerNo thanksSubscribe🙌Awesome, you're subscribed!Thanks for subscribing! Look out for your first newsletter in your inbox soon!Get us in your inboxSign up to our newsletter for the latest and greatest from your city and beyondEnter email addressDéjà vu! We already have this email. Try another?By entering your email address you agree to our Terms of Use and Privacy Policy and consent to receive emails from Time Out about news, events, offers and partner promotions.No thanks Awesome, you're subscribed!Thanks for subscribing! Look out for your first newsletter in your inbox soon!The best of London for free.Sign up for</code> |
  | <code>What benefits do subscribers receive by signing up for the email newsletter?</code>                  | <code>free.Sign up for our email to enjoy London without spending a thing (as well as some options when you’re feeling flush).Enter email addressDéjà vu! We already have this email. Try another?No thanksBy entering your email address you agree to our Terms of Use and Privacy Policy and consent to receive emails from Time Out about news, events, offers and partner promotions.No thanks Awesome, you're subscribed!Thanks for subscribing! Look out for your first newsletter in your inbox soon!Love the mag?Our newsletter hand-delivers the best bits to your inbox. Sign up to unlock our digital magazines and also receive the latest news, events, offers and partner promotions.Enter email addressDéjà vu! We already have this email. Try another?No</code>     |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 16   | 0.9213         |
| 2.0   | 32   | 0.9355         |
| 3.0   | 48   | 0.9290         |
| 3.125 | 50   | 0.9432         |
| 4.0   | 64   | 0.9574         |
| 5.0   | 80   | 0.9574         |
| 6.0   | 96   | 0.9574         |
| 6.25  | 100  | 0.9574         |
| 7.0   | 112  | 0.9574         |
| 8.0   | 128  | 0.9574         |
| 9.0   | 144  | 0.9574         |
| 9.375 | 150  | 0.9574         |
| 10.0  | 160  | 0.9574         |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->