--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: CIDAUTv2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.75 --- # CIDAUTv2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5012 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.7104 | 0.5139 | | No log | 2.0 | 8 | 0.6436 | 0.6065 | | 0.685 | 3.0 | 12 | 0.6004 | 0.6944 | | 0.685 | 4.0 | 16 | 0.5978 | 0.6759 | | 0.5422 | 5.0 | 20 | 0.5582 | 0.7222 | | 0.5422 | 6.0 | 24 | 0.5222 | 0.7361 | | 0.5422 | 7.0 | 28 | 0.5060 | 0.7222 | | 0.4521 | 8.0 | 32 | 0.4957 | 0.7269 | | 0.4521 | 9.0 | 36 | 0.4781 | 0.75 | | 0.3741 | 10.0 | 40 | 0.5012 | 0.75 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0