File size: 15,975 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
from __future__ import division
from six import PY2
from . import der, ecdsa, ellipticcurve, eddsa
from .util import orderlen, number_to_string, string_to_number
from ._compat import normalise_bytes, bit_length
# orderlen was defined in this module previously, so keep it in __all__,
# will need to mark it as deprecated later
__all__ = [
"UnknownCurveError",
"orderlen",
"Curve",
"SECP112r1",
"SECP112r2",
"SECP128r1",
"SECP160r1",
"NIST192p",
"NIST224p",
"NIST256p",
"NIST384p",
"NIST521p",
"curves",
"find_curve",
"curve_by_name",
"SECP256k1",
"BRAINPOOLP160r1",
"BRAINPOOLP160t1",
"BRAINPOOLP192r1",
"BRAINPOOLP192t1",
"BRAINPOOLP224r1",
"BRAINPOOLP224t1",
"BRAINPOOLP256r1",
"BRAINPOOLP256t1",
"BRAINPOOLP320r1",
"BRAINPOOLP320t1",
"BRAINPOOLP384r1",
"BRAINPOOLP384t1",
"BRAINPOOLP512r1",
"BRAINPOOLP512t1",
"PRIME_FIELD_OID",
"CHARACTERISTIC_TWO_FIELD_OID",
"Ed25519",
"Ed448",
]
PRIME_FIELD_OID = (1, 2, 840, 10045, 1, 1)
CHARACTERISTIC_TWO_FIELD_OID = (1, 2, 840, 10045, 1, 2)
class UnknownCurveError(Exception):
pass
class Curve:
def __init__(self, name, curve, generator, oid, openssl_name=None):
self.name = name
self.openssl_name = openssl_name # maybe None
self.curve = curve
self.generator = generator
self.order = generator.order()
if isinstance(curve, ellipticcurve.CurveEdTw):
# EdDSA keys are special in that both private and public
# are the same size (as it's defined only with compressed points)
# +1 for the sign bit and then round up
self.baselen = (bit_length(curve.p()) + 1 + 7) // 8
self.verifying_key_length = self.baselen
else:
self.baselen = orderlen(self.order)
self.verifying_key_length = 2 * orderlen(curve.p())
self.signature_length = 2 * self.baselen
self.oid = oid
if oid:
self.encoded_oid = der.encode_oid(*oid)
def __eq__(self, other):
if isinstance(other, Curve):
return (
self.curve == other.curve and self.generator == other.generator
)
return NotImplemented
def __ne__(self, other):
return not self == other
def __repr__(self):
return self.name
def to_der(self, encoding=None, point_encoding="uncompressed"):
"""Serialise the curve parameters to binary string.
:param str encoding: the format to save the curve parameters in.
Default is ``named_curve``, with fallback being the ``explicit``
if the OID is not set for the curve.
:param str point_encoding: the point encoding of the generator when
explicit curve encoding is used. Ignored for ``named_curve``
format.
:return: DER encoded ECParameters structure
:rtype: bytes
"""
if encoding is None:
if self.oid:
encoding = "named_curve"
else:
encoding = "explicit"
if encoding not in ("named_curve", "explicit"):
raise ValueError(
"Only 'named_curve' and 'explicit' encodings supported"
)
if encoding == "named_curve":
if not self.oid:
raise UnknownCurveError(
"Can't encode curve using named_curve encoding without "
"associated curve OID"
)
return der.encode_oid(*self.oid)
elif isinstance(self.curve, ellipticcurve.CurveEdTw):
assert encoding == "explicit"
raise UnknownCurveError(
"Twisted Edwards curves don't support explicit encoding"
)
# encode the ECParameters sequence
curve_p = self.curve.p()
version = der.encode_integer(1)
field_id = der.encode_sequence(
der.encode_oid(*PRIME_FIELD_OID), der.encode_integer(curve_p)
)
curve = der.encode_sequence(
der.encode_octet_string(
number_to_string(self.curve.a() % curve_p, curve_p)
),
der.encode_octet_string(
number_to_string(self.curve.b() % curve_p, curve_p)
),
)
base = der.encode_octet_string(self.generator.to_bytes(point_encoding))
order = der.encode_integer(self.generator.order())
seq_elements = [version, field_id, curve, base, order]
if self.curve.cofactor():
cofactor = der.encode_integer(self.curve.cofactor())
seq_elements.append(cofactor)
return der.encode_sequence(*seq_elements)
def to_pem(self, encoding=None, point_encoding="uncompressed"):
"""
Serialise the curve parameters to the :term:`PEM` format.
:param str encoding: the format to save the curve parameters in.
Default is ``named_curve``, with fallback being the ``explicit``
if the OID is not set for the curve.
:param str point_encoding: the point encoding of the generator when
explicit curve encoding is used. Ignored for ``named_curve``
format.
:return: PEM encoded ECParameters structure
:rtype: str
"""
return der.topem(
self.to_der(encoding, point_encoding), "EC PARAMETERS"
)
@staticmethod
def from_der(data, valid_encodings=None):
"""Decode the curve parameters from DER file.
:param data: the binary string to decode the parameters from
:type data: :term:`bytes-like object`
:param valid_encodings: set of names of allowed encodings, by default
all (set by passing ``None``), supported ones are ``named_curve``
and ``explicit``
:type valid_encodings: :term:`set-like object`
"""
if not valid_encodings:
valid_encodings = set(("named_curve", "explicit"))
if not all(i in ["named_curve", "explicit"] for i in valid_encodings):
raise ValueError(
"Only named_curve and explicit encodings supported"
)
data = normalise_bytes(data)
if not der.is_sequence(data):
if "named_curve" not in valid_encodings:
raise der.UnexpectedDER(
"named_curve curve parameters not allowed"
)
oid, empty = der.remove_object(data)
if empty:
raise der.UnexpectedDER("Unexpected data after OID")
return find_curve(oid)
if "explicit" not in valid_encodings:
raise der.UnexpectedDER("explicit curve parameters not allowed")
seq, empty = der.remove_sequence(data)
if empty:
raise der.UnexpectedDER(
"Unexpected data after ECParameters structure"
)
# decode the ECParameters sequence
version, rest = der.remove_integer(seq)
if version != 1:
raise der.UnexpectedDER("Unknown parameter encoding format")
field_id, rest = der.remove_sequence(rest)
curve, rest = der.remove_sequence(rest)
base_bytes, rest = der.remove_octet_string(rest)
order, rest = der.remove_integer(rest)
cofactor = None
if rest:
# the ASN.1 specification of ECParameters allows for future
# extensions of the sequence, so ignore the remaining bytes
cofactor, _ = der.remove_integer(rest)
# decode the ECParameters.fieldID sequence
field_type, rest = der.remove_object(field_id)
if field_type == CHARACTERISTIC_TWO_FIELD_OID:
raise UnknownCurveError("Characteristic 2 curves unsupported")
if field_type != PRIME_FIELD_OID:
raise UnknownCurveError(
"Unknown field type: {0}".format(field_type)
)
prime, empty = der.remove_integer(rest)
if empty:
raise der.UnexpectedDER(
"Unexpected data after ECParameters.fieldID.Prime-p element"
)
# decode the ECParameters.curve sequence
curve_a_bytes, rest = der.remove_octet_string(curve)
curve_b_bytes, rest = der.remove_octet_string(rest)
# seed can be defined here, but we don't parse it, so ignore `rest`
curve_a = string_to_number(curve_a_bytes)
curve_b = string_to_number(curve_b_bytes)
curve_fp = ellipticcurve.CurveFp(prime, curve_a, curve_b, cofactor)
# decode the ECParameters.base point
base = ellipticcurve.PointJacobi.from_bytes(
curve_fp,
base_bytes,
valid_encodings=("uncompressed", "compressed", "hybrid"),
order=order,
generator=True,
)
tmp_curve = Curve("unknown", curve_fp, base, None)
# if the curve matches one of the well-known ones, use the well-known
# one in preference, as it will have the OID and name associated
for i in curves:
if tmp_curve == i:
return i
return tmp_curve
@classmethod
def from_pem(cls, string, valid_encodings=None):
"""Decode the curve parameters from PEM file.
:param str string: the text string to decode the parameters from
:param valid_encodings: set of names of allowed encodings, by default
all (set by passing ``None``), supported ones are ``named_curve``
and ``explicit``
:type valid_encodings: :term:`set-like object`
"""
if not PY2 and isinstance(string, str): # pragma: no branch
string = string.encode()
ec_param_index = string.find(b"-----BEGIN EC PARAMETERS-----")
if ec_param_index == -1:
raise der.UnexpectedDER("EC PARAMETERS PEM header not found")
return cls.from_der(
der.unpem(string[ec_param_index:]), valid_encodings
)
# the SEC curves
SECP112r1 = Curve(
"SECP112r1",
ecdsa.curve_112r1,
ecdsa.generator_112r1,
(1, 3, 132, 0, 6),
"secp112r1",
)
SECP112r2 = Curve(
"SECP112r2",
ecdsa.curve_112r2,
ecdsa.generator_112r2,
(1, 3, 132, 0, 7),
"secp112r2",
)
SECP128r1 = Curve(
"SECP128r1",
ecdsa.curve_128r1,
ecdsa.generator_128r1,
(1, 3, 132, 0, 28),
"secp128r1",
)
SECP160r1 = Curve(
"SECP160r1",
ecdsa.curve_160r1,
ecdsa.generator_160r1,
(1, 3, 132, 0, 8),
"secp160r1",
)
# the NIST curves
NIST192p = Curve(
"NIST192p",
ecdsa.curve_192,
ecdsa.generator_192,
(1, 2, 840, 10045, 3, 1, 1),
"prime192v1",
)
NIST224p = Curve(
"NIST224p",
ecdsa.curve_224,
ecdsa.generator_224,
(1, 3, 132, 0, 33),
"secp224r1",
)
NIST256p = Curve(
"NIST256p",
ecdsa.curve_256,
ecdsa.generator_256,
(1, 2, 840, 10045, 3, 1, 7),
"prime256v1",
)
NIST384p = Curve(
"NIST384p",
ecdsa.curve_384,
ecdsa.generator_384,
(1, 3, 132, 0, 34),
"secp384r1",
)
NIST521p = Curve(
"NIST521p",
ecdsa.curve_521,
ecdsa.generator_521,
(1, 3, 132, 0, 35),
"secp521r1",
)
SECP256k1 = Curve(
"SECP256k1",
ecdsa.curve_secp256k1,
ecdsa.generator_secp256k1,
(1, 3, 132, 0, 10),
"secp256k1",
)
BRAINPOOLP160r1 = Curve(
"BRAINPOOLP160r1",
ecdsa.curve_brainpoolp160r1,
ecdsa.generator_brainpoolp160r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 1),
"brainpoolP160r1",
)
BRAINPOOLP160t1 = Curve(
"BRAINPOOLP160t1",
ecdsa.curve_brainpoolp160t1,
ecdsa.generator_brainpoolp160t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 2),
"brainpoolP160t1",
)
BRAINPOOLP192r1 = Curve(
"BRAINPOOLP192r1",
ecdsa.curve_brainpoolp192r1,
ecdsa.generator_brainpoolp192r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 3),
"brainpoolP192r1",
)
BRAINPOOLP192t1 = Curve(
"BRAINPOOLP192t1",
ecdsa.curve_brainpoolp192t1,
ecdsa.generator_brainpoolp192t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 4),
"brainpoolP192t1",
)
BRAINPOOLP224r1 = Curve(
"BRAINPOOLP224r1",
ecdsa.curve_brainpoolp224r1,
ecdsa.generator_brainpoolp224r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 5),
"brainpoolP224r1",
)
BRAINPOOLP224t1 = Curve(
"BRAINPOOLP224t1",
ecdsa.curve_brainpoolp224t1,
ecdsa.generator_brainpoolp224t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 6),
"brainpoolP224t1",
)
BRAINPOOLP256r1 = Curve(
"BRAINPOOLP256r1",
ecdsa.curve_brainpoolp256r1,
ecdsa.generator_brainpoolp256r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 7),
"brainpoolP256r1",
)
BRAINPOOLP256t1 = Curve(
"BRAINPOOLP256t1",
ecdsa.curve_brainpoolp256t1,
ecdsa.generator_brainpoolp256t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 8),
"brainpoolP256t1",
)
BRAINPOOLP320r1 = Curve(
"BRAINPOOLP320r1",
ecdsa.curve_brainpoolp320r1,
ecdsa.generator_brainpoolp320r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 9),
"brainpoolP320r1",
)
BRAINPOOLP320t1 = Curve(
"BRAINPOOLP320t1",
ecdsa.curve_brainpoolp320t1,
ecdsa.generator_brainpoolp320t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 10),
"brainpoolP320t1",
)
BRAINPOOLP384r1 = Curve(
"BRAINPOOLP384r1",
ecdsa.curve_brainpoolp384r1,
ecdsa.generator_brainpoolp384r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 11),
"brainpoolP384r1",
)
BRAINPOOLP384t1 = Curve(
"BRAINPOOLP384t1",
ecdsa.curve_brainpoolp384t1,
ecdsa.generator_brainpoolp384t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 12),
"brainpoolP384t1",
)
BRAINPOOLP512r1 = Curve(
"BRAINPOOLP512r1",
ecdsa.curve_brainpoolp512r1,
ecdsa.generator_brainpoolp512r1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 13),
"brainpoolP512r1",
)
BRAINPOOLP512t1 = Curve(
"BRAINPOOLP512t1",
ecdsa.curve_brainpoolp512t1,
ecdsa.generator_brainpoolp512t1,
(1, 3, 36, 3, 3, 2, 8, 1, 1, 14),
"brainpoolP512t1",
)
Ed25519 = Curve(
"Ed25519",
eddsa.curve_ed25519,
eddsa.generator_ed25519,
(1, 3, 101, 112),
)
Ed448 = Curve(
"Ed448",
eddsa.curve_ed448,
eddsa.generator_ed448,
(1, 3, 101, 113),
)
# no order in particular, but keep previously added curves first
curves = [
NIST192p,
NIST224p,
NIST256p,
NIST384p,
NIST521p,
SECP256k1,
BRAINPOOLP160r1,
BRAINPOOLP192r1,
BRAINPOOLP224r1,
BRAINPOOLP256r1,
BRAINPOOLP320r1,
BRAINPOOLP384r1,
BRAINPOOLP512r1,
SECP112r1,
SECP112r2,
SECP128r1,
SECP160r1,
Ed25519,
Ed448,
BRAINPOOLP160t1,
BRAINPOOLP192t1,
BRAINPOOLP224t1,
BRAINPOOLP256t1,
BRAINPOOLP320t1,
BRAINPOOLP384t1,
BRAINPOOLP512t1,
]
def find_curve(oid_curve):
"""Select a curve based on its OID
:param tuple[int,...] oid_curve: ASN.1 Object Identifier of the
curve to return, like ``(1, 2, 840, 10045, 3, 1, 7)`` for ``NIST256p``.
:raises UnknownCurveError: When the oid doesn't match any of the supported
curves
:rtype: ~ecdsa.curves.Curve
"""
for c in curves:
if c.oid == oid_curve:
return c
raise UnknownCurveError(
"I don't know about the curve with oid %s."
"I only know about these: %s" % (oid_curve, [c.name for c in curves])
)
def curve_by_name(name):
"""Select a curve based on its name.
Returns a :py:class:`~ecdsa.curves.Curve` object with a ``name`` name.
Note that ``name`` is case-sensitve.
:param str name: Name of the curve to return, like ``NIST256p`` or
``prime256v1``
:raises UnknownCurveError: When the name doesn't match any of the supported
curves
:rtype: ~ecdsa.curves.Curve
"""
for c in curves:
if name == c.name or (c.openssl_name and name == c.openssl_name):
return c
raise UnknownCurveError(
"Curve with name {0!r} unknown, only curves supported: {1}".format(
name, [c.name for c in curves]
)
)
|