File size: 7,170 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""Implementation of Edwards Digital Signature Algorithm."""
import hashlib
from ._sha3 import shake_256
from . import ellipticcurve
from ._compat import (
remove_whitespace,
bit_length,
bytes_to_int,
int_to_bytes,
compat26_str,
)
# edwards25519, defined in RFC7748
_p = 2**255 - 19
_a = -1
_d = int(
remove_whitespace(
"370957059346694393431380835087545651895421138798432190163887855330"
"85940283555"
)
)
_h = 8
_Gx = int(
remove_whitespace(
"151122213495354007725011514095885315114540126930418572060461132"
"83949847762202"
)
)
_Gy = int(
remove_whitespace(
"463168356949264781694283940034751631413079938662562256157830336"
"03165251855960"
)
)
_r = 2**252 + 0x14DEF9DEA2F79CD65812631A5CF5D3ED
def _sha512(data):
return hashlib.new("sha512", compat26_str(data)).digest()
curve_ed25519 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _sha512)
generator_ed25519 = ellipticcurve.PointEdwards(
curve_ed25519, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True
)
# edwards448, defined in RFC7748
_p = 2**448 - 2**224 - 1
_a = 1
_d = -39081 % _p
_h = 4
_Gx = int(
remove_whitespace(
"224580040295924300187604334099896036246789641632564134246125461"
"686950415467406032909029192869357953282578032075146446173674602635"
"247710"
)
)
_Gy = int(
remove_whitespace(
"298819210078481492676017930443930673437544040154080242095928241"
"372331506189835876003536878655418784733982303233503462500531545062"
"832660"
)
)
_r = 2**446 - 0x8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D
def _shake256(data):
return shake_256(data, 114)
curve_ed448 = ellipticcurve.CurveEdTw(_p, _a, _d, _h, _shake256)
generator_ed448 = ellipticcurve.PointEdwards(
curve_ed448, _Gx, _Gy, 1, _Gx * _Gy % _p, _r, generator=True
)
class PublicKey(object):
"""Public key for the Edwards Digital Signature Algorithm."""
def __init__(self, generator, public_key, public_point=None):
self.generator = generator
self.curve = generator.curve()
self.__encoded = public_key
# plus one for the sign bit and round up
self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8
if len(public_key) != self.baselen:
raise ValueError(
"Incorrect size of the public key, expected: {0} bytes".format(
self.baselen
)
)
if public_point:
self.__point = public_point
else:
self.__point = ellipticcurve.PointEdwards.from_bytes(
self.curve, public_key
)
def __eq__(self, other):
if isinstance(other, PublicKey):
return (
self.curve == other.curve and self.__encoded == other.__encoded
)
return NotImplemented
def __ne__(self, other):
return not self == other
@property
def point(self):
return self.__point
@point.setter
def point(self, other):
if self.__point != other:
raise ValueError("Can't change the coordinates of the point")
self.__point = other
def public_point(self):
return self.__point
def public_key(self):
return self.__encoded
def verify(self, data, signature):
"""Verify a Pure EdDSA signature over data."""
data = compat26_str(data)
if len(signature) != 2 * self.baselen:
raise ValueError(
"Invalid signature length, expected: {0} bytes".format(
2 * self.baselen
)
)
R = ellipticcurve.PointEdwards.from_bytes(
self.curve, signature[: self.baselen]
)
S = bytes_to_int(signature[self.baselen :], "little")
if S >= self.generator.order():
raise ValueError("Invalid signature")
dom = bytearray()
if self.curve == curve_ed448:
dom = bytearray(b"SigEd448" + b"\x00\x00")
k = bytes_to_int(
self.curve.hash_func(dom + R.to_bytes() + self.__encoded + data),
"little",
)
if self.generator * S != self.__point * k + R:
raise ValueError("Invalid signature")
return True
class PrivateKey(object):
"""Private key for the Edwards Digital Signature Algorithm."""
def __init__(self, generator, private_key):
self.generator = generator
self.curve = generator.curve()
# plus one for the sign bit and round up
self.baselen = (bit_length(self.curve.p()) + 1 + 7) // 8
if len(private_key) != self.baselen:
raise ValueError(
"Incorrect size of private key, expected: {0} bytes".format(
self.baselen
)
)
self.__private_key = bytes(private_key)
self.__h = bytearray(self.curve.hash_func(private_key))
self.__public_key = None
a = self.__h[: self.baselen]
a = self._key_prune(a)
scalar = bytes_to_int(a, "little")
self.__s = scalar
@property
def private_key(self):
return self.__private_key
def __eq__(self, other):
if isinstance(other, PrivateKey):
return (
self.curve == other.curve
and self.__private_key == other.__private_key
)
return NotImplemented
def __ne__(self, other):
return not self == other
def _key_prune(self, key):
# make sure the key is not in a small subgroup
h = self.curve.cofactor()
if h == 4:
h_log = 2
elif h == 8:
h_log = 3
else:
raise ValueError("Only cofactor 4 and 8 curves supported")
key[0] &= ~((1 << h_log) - 1)
# ensure the highest bit is set but no higher
l = bit_length(self.curve.p())
if l % 8 == 0:
key[-1] = 0
key[-2] |= 0x80
else:
key[-1] = key[-1] & (1 << (l % 8)) - 1 | 1 << (l % 8) - 1
return key
def public_key(self):
"""Generate the public key based on the included private key"""
if self.__public_key:
return self.__public_key
public_point = self.generator * self.__s
self.__public_key = PublicKey(
self.generator, public_point.to_bytes(), public_point
)
return self.__public_key
def sign(self, data):
"""Perform a Pure EdDSA signature over data."""
data = compat26_str(data)
A = self.public_key().public_key()
prefix = self.__h[self.baselen :]
dom = bytearray()
if self.curve == curve_ed448:
dom = bytearray(b"SigEd448" + b"\x00\x00")
r = bytes_to_int(self.curve.hash_func(dom + prefix + data), "little")
R = (self.generator * r).to_bytes()
k = bytes_to_int(self.curve.hash_func(dom + R + A + data), "little")
k %= self.generator.order()
S = (r + k * self.__s) % self.generator.order()
return R + int_to_bytes(S, self.baselen, "little")
|