File size: 54,118 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 |
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
# Nomenclature:
# - Q is a public key.
# The "Elliptic Curve Domain Parameters" include:
# - q is the "field size", which in our case equals p.
# - p is a big prime.
# - G is a point of prime order (5.1.1.1).
# - n is the order of G (5.1.1.1).
# Public-key validation (5.2.2):
# - Verify that Q is not the point at infinity.
# - Verify that X_Q and Y_Q are in [0,p-1].
# - Verify that Q is on the curve.
# - Verify that nQ is the point at infinity.
# Signature generation (5.3):
# - Pick random k from [1,n-1].
# Signature checking (5.4.2):
# - Verify that r and s are in [1,n-1].
#
# Revision history:
# 2005.12.31 - Initial version.
# 2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
# Modified extensively as part of python-ecdsa.
from __future__ import division
try:
from gmpy2 import mpz
GMPY = True
except ImportError: # pragma: no branch
try:
from gmpy import mpz
GMPY = True
except ImportError:
GMPY = False
from six import python_2_unicode_compatible
from . import numbertheory
from ._compat import normalise_bytes, int_to_bytes, bit_length, bytes_to_int
from .errors import MalformedPointError
from .util import orderlen, string_to_number, number_to_string
@python_2_unicode_compatible
class CurveFp(object):
"""
:term:`Short Weierstrass Elliptic Curve <short Weierstrass curve>` over a
prime field.
"""
if GMPY: # pragma: no branch
def __init__(self, p, a, b, h=None):
"""
The curve of points satisfying y^2 = x^3 + a*x + b (mod p).
h is an integer that is the cofactor of the elliptic curve domain
parameters; it is the number of points satisfying the elliptic
curve equation divided by the order of the base point. It is used
for selection of efficient algorithm for public point verification.
"""
self.__p = mpz(p)
self.__a = mpz(a)
self.__b = mpz(b)
# h is not used in calculations and it can be None, so don't use
# gmpy with it
self.__h = h
else: # pragma: no branch
def __init__(self, p, a, b, h=None):
"""
The curve of points satisfying y^2 = x^3 + a*x + b (mod p).
h is an integer that is the cofactor of the elliptic curve domain
parameters; it is the number of points satisfying the elliptic
curve equation divided by the order of the base point. It is used
for selection of efficient algorithm for public point verification.
"""
self.__p = p
self.__a = a
self.__b = b
self.__h = h
def __eq__(self, other):
"""Return True if other is an identical curve, False otherwise.
Note: the value of the cofactor of the curve is not taken into account
when comparing curves, as it's derived from the base point and
intrinsic curve characteristic (but it's complex to compute),
only the prime and curve parameters are considered.
"""
if isinstance(other, CurveFp):
p = self.__p
return (
self.__p == other.__p
and self.__a % p == other.__a % p
and self.__b % p == other.__b % p
)
return NotImplemented
def __ne__(self, other):
"""Return False if other is an identical curve, True otherwise."""
return not self == other
def __hash__(self):
return hash((self.__p, self.__a, self.__b))
def p(self):
return self.__p
def a(self):
return self.__a
def b(self):
return self.__b
def cofactor(self):
return self.__h
def contains_point(self, x, y):
"""Is the point (x,y) on this curve?"""
return (y * y - ((x * x + self.__a) * x + self.__b)) % self.__p == 0
def __str__(self):
if self.__h is not None:
return "CurveFp(p={0}, a={1}, b={2}, h={3})".format(
self.__p,
self.__a,
self.__b,
self.__h,
)
return "CurveFp(p={0}, a={1}, b={2})".format(
self.__p,
self.__a,
self.__b,
)
class CurveEdTw(object):
"""Parameters for a Twisted Edwards Elliptic Curve"""
if GMPY: # pragma: no branch
def __init__(self, p, a, d, h=None, hash_func=None):
"""
The curve of points satisfying a*x^2 + y^2 = 1 + d*x^2*y^2 (mod p).
h is the cofactor of the curve.
hash_func is the hash function associated with the curve
(like SHA-512 for Ed25519)
"""
self.__p = mpz(p)
self.__a = mpz(a)
self.__d = mpz(d)
self.__h = h
self.__hash_func = hash_func
else:
def __init__(self, p, a, d, h=None, hash_func=None):
"""
The curve of points satisfying a*x^2 + y^2 = 1 + d*x^2*y^2 (mod p).
h is the cofactor of the curve.
hash_func is the hash function associated with the curve
(like SHA-512 for Ed25519)
"""
self.__p = p
self.__a = a
self.__d = d
self.__h = h
self.__hash_func = hash_func
def __eq__(self, other):
"""Returns True if other is an identical curve."""
if isinstance(other, CurveEdTw):
p = self.__p
return (
self.__p == other.__p
and self.__a % p == other.__a % p
and self.__d % p == other.__d % p
)
return NotImplemented
def __ne__(self, other):
"""Return False if the other is an identical curve, True otherwise."""
return not self == other
def __hash__(self):
return hash((self.__p, self.__a, self.__d))
def contains_point(self, x, y):
"""Is the point (x, y) on this curve?"""
return (
self.__a * x * x + y * y - 1 - self.__d * x * x * y * y
) % self.__p == 0
def p(self):
return self.__p
def a(self):
return self.__a
def d(self):
return self.__d
def hash_func(self, data):
return self.__hash_func(data)
def cofactor(self):
return self.__h
def __str__(self):
if self.__h is not None:
return "CurveEdTw(p={0}, a={1}, d={2}, h={3})".format(
self.__p,
self.__a,
self.__d,
self.__h,
)
return "CurveEdTw(p={0}, a={1}, d={2})".format(
self.__p,
self.__a,
self.__d,
)
class AbstractPoint(object):
"""Class for common methods of elliptic curve points."""
@staticmethod
def _from_raw_encoding(data, raw_encoding_length):
"""
Decode public point from :term:`raw encoding`.
:term:`raw encoding` is the same as the :term:`uncompressed` encoding,
but without the 0x04 byte at the beginning.
"""
# real assert, from_bytes() should not call us with different length
assert len(data) == raw_encoding_length
xs = data[: raw_encoding_length // 2]
ys = data[raw_encoding_length // 2 :]
# real assert, raw_encoding_length is calculated by multiplying an
# integer by two so it will always be even
assert len(xs) == raw_encoding_length // 2
assert len(ys) == raw_encoding_length // 2
coord_x = string_to_number(xs)
coord_y = string_to_number(ys)
return coord_x, coord_y
@staticmethod
def _from_compressed(data, curve):
"""Decode public point from compressed encoding."""
if data[:1] not in (b"\x02", b"\x03"):
raise MalformedPointError("Malformed compressed point encoding")
is_even = data[:1] == b"\x02"
x = string_to_number(data[1:])
p = curve.p()
alpha = (pow(x, 3, p) + (curve.a() * x) + curve.b()) % p
try:
beta = numbertheory.square_root_mod_prime(alpha, p)
except numbertheory.Error as e:
raise MalformedPointError(
"Encoding does not correspond to a point on curve", e
)
if is_even == bool(beta & 1):
y = p - beta
else:
y = beta
return x, y
@classmethod
def _from_hybrid(cls, data, raw_encoding_length, validate_encoding):
"""Decode public point from hybrid encoding."""
# real assert, from_bytes() should not call us with different types
assert data[:1] in (b"\x06", b"\x07")
# primarily use the uncompressed as it's easiest to handle
x, y = cls._from_raw_encoding(data[1:], raw_encoding_length)
# but validate if it's self-consistent if we're asked to do that
if validate_encoding and (
y & 1
and data[:1] != b"\x07"
or (not y & 1)
and data[:1] != b"\x06"
):
raise MalformedPointError("Inconsistent hybrid point encoding")
return x, y
@classmethod
def _from_edwards(cls, curve, data):
"""Decode a point on an Edwards curve."""
data = bytearray(data)
p = curve.p()
# add 1 for the sign bit and then round up
exp_len = (bit_length(p) + 1 + 7) // 8
if len(data) != exp_len:
raise MalformedPointError("Point length doesn't match the curve.")
x_0 = (data[-1] & 0x80) >> 7
data[-1] &= 0x80 - 1
y = bytes_to_int(data, "little")
if GMPY:
y = mpz(y)
x2 = (
(y * y - 1)
* numbertheory.inverse_mod(curve.d() * y * y - curve.a(), p)
% p
)
try:
x = numbertheory.square_root_mod_prime(x2, p)
except numbertheory.Error as e:
raise MalformedPointError(
"Encoding does not correspond to a point on curve", e
)
if x % 2 != x_0:
x = -x % p
return x, y
@classmethod
def from_bytes(
cls, curve, data, validate_encoding=True, valid_encodings=None
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
Note: generally you will want to call the ``from_bytes()`` method of
either a child class, PointJacobi or Point.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: x and y coordinates of the encoded point
:rtype: tuple(int, int)
"""
if not valid_encodings:
valid_encodings = set(
["uncompressed", "compressed", "hybrid", "raw"]
)
if not all(
i in set(("uncompressed", "compressed", "hybrid", "raw"))
for i in valid_encodings
):
raise ValueError(
"Only uncompressed, compressed, hybrid or raw encoding "
"supported."
)
data = normalise_bytes(data)
if isinstance(curve, CurveEdTw):
return cls._from_edwards(curve, data)
key_len = len(data)
raw_encoding_length = 2 * orderlen(curve.p())
if key_len == raw_encoding_length and "raw" in valid_encodings:
coord_x, coord_y = cls._from_raw_encoding(
data, raw_encoding_length
)
elif key_len == raw_encoding_length + 1 and (
"hybrid" in valid_encodings or "uncompressed" in valid_encodings
):
if data[:1] in (b"\x06", b"\x07") and "hybrid" in valid_encodings:
coord_x, coord_y = cls._from_hybrid(
data, raw_encoding_length, validate_encoding
)
elif data[:1] == b"\x04" and "uncompressed" in valid_encodings:
coord_x, coord_y = cls._from_raw_encoding(
data[1:], raw_encoding_length
)
else:
raise MalformedPointError(
"Invalid X9.62 encoding of the public point"
)
elif (
key_len == raw_encoding_length // 2 + 1
and "compressed" in valid_encodings
):
coord_x, coord_y = cls._from_compressed(data, curve)
else:
raise MalformedPointError(
"Length of string does not match lengths of "
"any of the enabled ({0}) encodings of the "
"curve.".format(", ".join(valid_encodings))
)
return coord_x, coord_y
def _raw_encode(self):
"""Convert the point to the :term:`raw encoding`."""
prime = self.curve().p()
x_str = number_to_string(self.x(), prime)
y_str = number_to_string(self.y(), prime)
return x_str + y_str
def _compressed_encode(self):
"""Encode the point into the compressed form."""
prime = self.curve().p()
x_str = number_to_string(self.x(), prime)
if self.y() & 1:
return b"\x03" + x_str
return b"\x02" + x_str
def _hybrid_encode(self):
"""Encode the point into the hybrid form."""
raw_enc = self._raw_encode()
if self.y() & 1:
return b"\x07" + raw_enc
return b"\x06" + raw_enc
def _edwards_encode(self):
"""Encode the point according to RFC8032 encoding."""
self.scale()
x, y, p = self.x(), self.y(), self.curve().p()
# add 1 for the sign bit and then round up
enc_len = (bit_length(p) + 1 + 7) // 8
y_str = int_to_bytes(y, enc_len, "little")
if x % 2:
y_str[-1] |= 0x80
return y_str
def to_bytes(self, encoding="raw"):
"""
Convert the point to a byte string.
The method by default uses the :term:`raw encoding` (specified
by `encoding="raw"`. It can also output points in :term:`uncompressed`,
:term:`compressed`, and :term:`hybrid` formats.
For points on Edwards curves `encoding` is ignored and only the
encoding defined in RFC 8032 is supported.
:return: :term:`raw encoding` of a public on the curve
:rtype: bytes
"""
assert encoding in ("raw", "uncompressed", "compressed", "hybrid")
curve = self.curve()
if isinstance(curve, CurveEdTw):
return self._edwards_encode()
elif encoding == "raw":
return self._raw_encode()
elif encoding == "uncompressed":
return b"\x04" + self._raw_encode()
elif encoding == "hybrid":
return self._hybrid_encode()
else:
return self._compressed_encode()
@staticmethod
def _naf(mult):
"""Calculate non-adjacent form of number."""
ret = []
while mult:
if mult % 2:
nd = mult % 4
if nd >= 2:
nd -= 4
ret.append(nd)
mult -= nd
else:
ret.append(0)
mult //= 2
return ret
class PointJacobi(AbstractPoint):
"""
Point on a short Weierstrass elliptic curve. Uses Jacobi coordinates.
In Jacobian coordinates, there are three parameters, X, Y and Z.
They correspond to affine parameters 'x' and 'y' like so:
x = X / Z²
y = Y / Z³
"""
def __init__(self, curve, x, y, z, order=None, generator=False):
"""
Initialise a point that uses Jacobi representation internally.
:param CurveFp curve: curve on which the point resides
:param int x: the X parameter of Jacobi representation (equal to x when
converting from affine coordinates
:param int y: the Y parameter of Jacobi representation (equal to y when
converting from affine coordinates
:param int z: the Z parameter of Jacobi representation (equal to 1 when
converting from affine coordinates
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: the point provided is a curve generator, as
such, it will be commonly used with scalar multiplication. This will
cause to precompute multiplication table generation for it
"""
super(PointJacobi, self).__init__()
self.__curve = curve
if GMPY: # pragma: no branch
self.__coords = (mpz(x), mpz(y), mpz(z))
self.__order = order and mpz(order)
else: # pragma: no branch
self.__coords = (x, y, z)
self.__order = order
self.__generator = generator
self.__precompute = []
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=True,
valid_encodings=None,
order=None,
generator=False,
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: the point provided is a curve generator, as
such, it will be commonly used with scalar multiplication. This
will cause to precompute multiplication table generation for it
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Point on curve
:rtype: PointJacobi
"""
coord_x, coord_y = super(PointJacobi, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return PointJacobi(curve, coord_x, coord_y, 1, order, generator)
def _maybe_precompute(self):
if not self.__generator or self.__precompute:
return
# since this code will execute just once, and it's fully deterministic,
# depend on atomicity of the last assignment to switch from empty
# self.__precompute to filled one and just ignore the unlikely
# situation when two threads execute it at the same time (as it won't
# lead to inconsistent __precompute)
order = self.__order
assert order
precompute = []
i = 1
order *= 2
coord_x, coord_y, coord_z = self.__coords
doubler = PointJacobi(self.__curve, coord_x, coord_y, coord_z, order)
order *= 2
precompute.append((doubler.x(), doubler.y()))
while i < order:
i *= 2
doubler = doubler.double().scale()
precompute.append((doubler.x(), doubler.y()))
self.__precompute = precompute
def __getstate__(self):
# while this code can execute at the same time as _maybe_precompute()
# is updating the __precompute or scale() is updating the __coords,
# there is no requirement for consistency between __coords and
# __precompute
state = self.__dict__.copy()
return state
def __setstate__(self, state):
self.__dict__.update(state)
def __eq__(self, other):
"""Compare for equality two points with each-other.
Note: only points that lay on the same curve can be equal.
"""
x1, y1, z1 = self.__coords
if other is INFINITY:
return not y1 or not z1
if isinstance(other, Point):
x2, y2, z2 = other.x(), other.y(), 1
elif isinstance(other, PointJacobi):
x2, y2, z2 = other.__coords
else:
return NotImplemented
if self.__curve != other.curve():
return False
p = self.__curve.p()
zz1 = z1 * z1 % p
zz2 = z2 * z2 % p
# compare the fractions by bringing them to the same denominator
# depend on short-circuit to save 4 multiplications in case of
# inequality
return (x1 * zz2 - x2 * zz1) % p == 0 and (
y1 * zz2 * z2 - y2 * zz1 * z1
) % p == 0
def __ne__(self, other):
"""Compare for inequality two points with each-other."""
return not self == other
def order(self):
"""Return the order of the point.
None if it is undefined.
"""
return self.__order
def curve(self):
"""Return curve over which the point is defined."""
return self.__curve
def x(self):
"""
Return affine x coordinate.
This method should be used only when the 'y' coordinate is not needed.
It's computationally more efficient to use `to_affine()` and then
call x() and y() on the returned instance. Or call `scale()`
and then x() and y() on the returned instance.
"""
x, _, z = self.__coords
if z == 1:
return x
p = self.__curve.p()
z = numbertheory.inverse_mod(z, p)
return x * z**2 % p
def y(self):
"""
Return affine y coordinate.
This method should be used only when the 'x' coordinate is not needed.
It's computationally more efficient to use `to_affine()` and then
call x() and y() on the returned instance. Or call `scale()`
and then x() and y() on the returned instance.
"""
_, y, z = self.__coords
if z == 1:
return y
p = self.__curve.p()
z = numbertheory.inverse_mod(z, p)
return y * z**3 % p
def scale(self):
"""
Return point scaled so that z == 1.
Modifies point in place, returns self.
"""
x, y, z = self.__coords
if z == 1:
return self
# scaling is deterministic, so even if two threads execute the below
# code at the same time, they will set __coords to the same value
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(z, p)
zz_inv = z_inv * z_inv % p
x = x * zz_inv % p
y = y * zz_inv * z_inv % p
self.__coords = (x, y, 1)
return self
def to_affine(self):
"""Return point in affine form."""
_, y, z = self.__coords
if not y or not z:
return INFINITY
self.scale()
x, y, z = self.__coords
return Point(self.__curve, x, y, self.__order)
@staticmethod
def from_affine(point, generator=False):
"""Create from an affine point.
:param bool generator: set to True to make the point to precalculate
multiplication table - useful for public point when verifying many
signatures (around 100 or so) or for generator points of a curve.
"""
return PointJacobi(
point.curve(), point.x(), point.y(), 1, point.order(), generator
)
# please note that all the methods that use the equations from
# hyperelliptic
# are formatted in a way to maximise performance.
# Things that make code faster: multiplying instead of taking to the power
# (`xx = x * x; xxxx = xx * xx % p` is faster than `xxxx = x**4 % p` and
# `pow(x, 4, p)`),
# multiple assignments at the same time (`x1, x2 = self.x1, self.x2` is
# faster than `x1 = self.x1; x2 = self.x2`),
# similarly, sometimes the `% p` is skipped if it makes the calculation
# faster and the result of calculation is later reduced modulo `p`
def _double_with_z_1(self, X1, Y1, p, a):
"""Add a point to itself with z == 1."""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl
XX, YY = X1 * X1 % p, Y1 * Y1 % p
if not YY:
return 0, 0, 1
YYYY = YY * YY % p
S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
M = 3 * XX + a
T = (M * M - 2 * S) % p
# X3 = T
Y3 = (M * (S - T) - 8 * YYYY) % p
Z3 = 2 * Y1 % p
return T, Y3, Z3
def _double(self, X1, Y1, Z1, p, a):
"""Add a point to itself, arbitrary z."""
if Z1 == 1:
return self._double_with_z_1(X1, Y1, p, a)
if not Y1 or not Z1:
return 0, 0, 1
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
XX, YY = X1 * X1 % p, Y1 * Y1 % p
if not YY:
return 0, 0, 1
YYYY = YY * YY % p
ZZ = Z1 * Z1 % p
S = 2 * ((X1 + YY) ** 2 - XX - YYYY) % p
M = (3 * XX + a * ZZ * ZZ) % p
T = (M * M - 2 * S) % p
# X3 = T
Y3 = (M * (S - T) - 8 * YYYY) % p
Z3 = ((Y1 + Z1) ** 2 - YY - ZZ) % p
return T, Y3, Z3
def double(self):
"""Add a point to itself."""
X1, Y1, Z1 = self.__coords
if not Y1:
return INFINITY
p, a = self.__curve.p(), self.__curve.a()
X3, Y3, Z3 = self._double(X1, Y1, Z1, p, a)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def _add_with_z_1(self, X1, Y1, X2, Y2, p):
"""add points when both Z1 and Z2 equal 1"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl
H = X2 - X1
HH = H * H
I = 4 * HH % p
J = H * I
r = 2 * (Y2 - Y1)
if not H and not r:
return self._double_with_z_1(X1, Y1, p, self.__curve.a())
V = X1 * I
X3 = (r**2 - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * Y1 * J) % p
Z3 = 2 * H % p
return X3, Y3, Z3
def _add_with_z_eq(self, X1, Y1, Z1, X2, Y2, p):
"""add points when Z1 == Z2"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-zadd-2007-m
A = (X2 - X1) ** 2 % p
B = X1 * A % p
C = X2 * A
D = (Y2 - Y1) ** 2 % p
if not A and not D:
return self._double(X1, Y1, Z1, p, self.__curve.a())
X3 = (D - B - C) % p
Y3 = ((Y2 - Y1) * (B - X3) - Y1 * (C - B)) % p
Z3 = Z1 * (X2 - X1) % p
return X3, Y3, Z3
def _add_with_z2_1(self, X1, Y1, Z1, X2, Y2, p):
"""add points when Z2 == 1"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-madd-2007-bl
Z1Z1 = Z1 * Z1 % p
U2, S2 = X2 * Z1Z1 % p, Y2 * Z1 * Z1Z1 % p
H = (U2 - X1) % p
HH = H * H % p
I = 4 * HH % p
J = H * I
r = 2 * (S2 - Y1) % p
if not r and not H:
return self._double_with_z_1(X2, Y2, p, self.__curve.a())
V = X1 * I
X3 = (r * r - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * Y1 * J) % p
Z3 = ((Z1 + H) ** 2 - Z1Z1 - HH) % p
return X3, Y3, Z3
def _add_with_z_ne(self, X1, Y1, Z1, X2, Y2, Z2, p):
"""add points with arbitrary z"""
# after:
# http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
Z1Z1 = Z1 * Z1 % p
Z2Z2 = Z2 * Z2 % p
U1 = X1 * Z2Z2 % p
U2 = X2 * Z1Z1 % p
S1 = Y1 * Z2 * Z2Z2 % p
S2 = Y2 * Z1 * Z1Z1 % p
H = U2 - U1
I = 4 * H * H % p
J = H * I % p
r = 2 * (S2 - S1) % p
if not H and not r:
return self._double(X1, Y1, Z1, p, self.__curve.a())
V = U1 * I
X3 = (r * r - J - 2 * V) % p
Y3 = (r * (V - X3) - 2 * S1 * J) % p
Z3 = ((Z1 + Z2) ** 2 - Z1Z1 - Z2Z2) * H % p
return X3, Y3, Z3
def __radd__(self, other):
"""Add other to self."""
return self + other
def _add(self, X1, Y1, Z1, X2, Y2, Z2, p):
"""add two points, select fastest method."""
if not Y1 or not Z1:
return X2, Y2, Z2
if not Y2 or not Z2:
return X1, Y1, Z1
if Z1 == Z2:
if Z1 == 1:
return self._add_with_z_1(X1, Y1, X2, Y2, p)
return self._add_with_z_eq(X1, Y1, Z1, X2, Y2, p)
if Z1 == 1:
return self._add_with_z2_1(X2, Y2, Z2, X1, Y1, p)
if Z2 == 1:
return self._add_with_z2_1(X1, Y1, Z1, X2, Y2, p)
return self._add_with_z_ne(X1, Y1, Z1, X2, Y2, Z2, p)
def __add__(self, other):
"""Add two points on elliptic curve."""
if self == INFINITY:
return other
if other == INFINITY:
return self
if isinstance(other, Point):
other = PointJacobi.from_affine(other)
if self.__curve != other.__curve:
raise ValueError("The other point is on different curve")
p = self.__curve.p()
X1, Y1, Z1 = self.__coords
X2, Y2, Z2 = other.__coords
X3, Y3, Z3 = self._add(X1, Y1, Z1, X2, Y2, Z2, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __rmul__(self, other):
"""Multiply point by an integer."""
return self * other
def _mul_precompute(self, other):
"""Multiply point by integer with precomputation table."""
X3, Y3, Z3, p = 0, 0, 1, self.__curve.p()
_add = self._add
for X2, Y2 in self.__precompute:
if other % 2:
if other % 4 >= 2:
other = (other + 1) // 2
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
else:
other = (other - 1) // 2
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)
else:
other //= 2
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __mul__(self, other):
"""Multiply point by an integer."""
if not self.__coords[1] or not other:
return INFINITY
if other == 1:
return self
if self.__order:
# order*2 as a protection for Minerva
other = other % (self.__order * 2)
self._maybe_precompute()
if self.__precompute:
return self._mul_precompute(other)
self = self.scale()
X2, Y2, _ = self.__coords
X3, Y3, Z3 = 0, 0, 1
p, a = self.__curve.p(), self.__curve.a()
_double = self._double
_add = self._add
# since adding points when at least one of them is scaled
# is quicker, reverse the NAF order
for i in reversed(self._naf(other)):
X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)
if i < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p)
elif i > 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def mul_add(self, self_mul, other, other_mul):
"""
Do two multiplications at the same time, add results.
calculates self*self_mul + other*other_mul
"""
if other == INFINITY or other_mul == 0:
return self * self_mul
if self_mul == 0:
return other * other_mul
if not isinstance(other, PointJacobi):
other = PointJacobi.from_affine(other)
# when the points have precomputed answers, then multiplying them alone
# is faster (as it uses NAF and no point doublings)
self._maybe_precompute()
other._maybe_precompute()
if self.__precompute and other.__precompute:
return self * self_mul + other * other_mul
if self.__order:
self_mul = self_mul % self.__order
other_mul = other_mul % self.__order
# (X3, Y3, Z3) is the accumulator
X3, Y3, Z3 = 0, 0, 1
p, a = self.__curve.p(), self.__curve.a()
# as we have 6 unique points to work with, we can't scale all of them,
# but do scale the ones that are used most often
self.scale()
X1, Y1, Z1 = self.__coords
other.scale()
X2, Y2, Z2 = other.__coords
_double = self._double
_add = self._add
# with NAF we have 3 options: no add, subtract, add
# so with 2 points, we have 9 combinations:
# 0, -A, +A, -B, -A-B, +A-B, +B, -A+B, +A+B
# so we need 4 combined points:
mAmB_X, mAmB_Y, mAmB_Z = _add(X1, -Y1, Z1, X2, -Y2, Z2, p)
pAmB_X, pAmB_Y, pAmB_Z = _add(X1, Y1, Z1, X2, -Y2, Z2, p)
mApB_X, mApB_Y, mApB_Z = pAmB_X, -pAmB_Y, pAmB_Z
pApB_X, pApB_Y, pApB_Z = mAmB_X, -mAmB_Y, mAmB_Z
# when the self and other sum to infinity, we need to add them
# one by one to get correct result but as that's very unlikely to
# happen in regular operation, we don't need to optimise this case
if not pApB_Y or not pApB_Z:
return self * self_mul + other * other_mul
# gmp object creation has cumulatively higher overhead than the
# speedup we get from calculating the NAF using gmp so ensure use
# of int()
self_naf = list(reversed(self._naf(int(self_mul))))
other_naf = list(reversed(self._naf(int(other_mul))))
# ensure that the lists are the same length (zip() will truncate
# longer one otherwise)
if len(self_naf) < len(other_naf):
self_naf = [0] * (len(other_naf) - len(self_naf)) + self_naf
elif len(self_naf) > len(other_naf):
other_naf = [0] * (len(self_naf) - len(other_naf)) + other_naf
for A, B in zip(self_naf, other_naf):
X3, Y3, Z3 = _double(X3, Y3, Z3, p, a)
# conditions ordered from most to least likely
if A == 0:
if B == 0:
pass
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, Z2, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, Z2, p)
elif A < 0:
if B == 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X1, -Y1, Z1, p)
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, mAmB_X, mAmB_Y, mAmB_Z, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, mApB_X, mApB_Y, mApB_Z, p)
else:
assert A > 0
if B == 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, X1, Y1, Z1, p)
elif B < 0:
X3, Y3, Z3 = _add(X3, Y3, Z3, pAmB_X, pAmB_Y, pAmB_Z, p)
else:
assert B > 0
X3, Y3, Z3 = _add(X3, Y3, Z3, pApB_X, pApB_Y, pApB_Z, p)
if not Y3 or not Z3:
return INFINITY
return PointJacobi(self.__curve, X3, Y3, Z3, self.__order)
def __neg__(self):
"""Return negated point."""
x, y, z = self.__coords
return PointJacobi(self.__curve, x, -y, z, self.__order)
class Point(AbstractPoint):
"""A point on a short Weierstrass elliptic curve. Altering x and y is
forbidden, but they can be read by the x() and y() methods."""
def __init__(self, curve, x, y, order=None):
"""curve, x, y, order; order (optional) is the order of this point."""
super(Point, self).__init__()
self.__curve = curve
if GMPY:
self.__x = x and mpz(x)
self.__y = y and mpz(y)
self.__order = order and mpz(order)
else:
self.__x = x
self.__y = y
self.__order = order
# self.curve is allowed to be None only for INFINITY:
if self.__curve:
assert self.__curve.contains_point(x, y)
# for curves with cofactor 1, all points that are on the curve are
# scalar multiples of the base point, so performing multiplication is
# not necessary to verify that. See Section 3.2.2.1 of SEC 1 v2
if curve and curve.cofactor() != 1 and order:
assert self * order == INFINITY
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=True,
valid_encodings=None,
order=None,
):
"""
Initialise the object from byte encoding of a point.
The method does accept and automatically detect the type of point
encoding used. It supports the :term:`raw encoding`,
:term:`uncompressed`, :term:`compressed`, and :term:`hybrid` encodings.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ~ecdsa.ellipticcurve.CurveFp
:param validate_encoding: whether to verify that the encoding of the
point is self-consistent, defaults to True, has effect only
on ``hybrid`` encoding
:type validate_encoding: bool
:param valid_encodings: list of acceptable point encoding formats,
supported ones are: :term:`uncompressed`, :term:`compressed`,
:term:`hybrid`, and :term:`raw encoding` (specified with ``raw``
name). All formats by default (specified with ``None``).
:type valid_encodings: :term:`set-like object`
:param int order: the point order, must be non zero when using
generator=True
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Point on curve
:rtype: Point
"""
coord_x, coord_y = super(Point, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return Point(curve, coord_x, coord_y, order)
def __eq__(self, other):
"""Return True if the points are identical, False otherwise.
Note: only points that lay on the same curve can be equal.
"""
if isinstance(other, Point):
return (
self.__curve == other.__curve
and self.__x == other.__x
and self.__y == other.__y
)
return NotImplemented
def __ne__(self, other):
"""Returns False if points are identical, True otherwise."""
return not self == other
def __neg__(self):
return Point(self.__curve, self.__x, self.__curve.p() - self.__y)
def __add__(self, other):
"""Add one point to another point."""
# X9.62 B.3:
if not isinstance(other, Point):
return NotImplemented
if other == INFINITY:
return self
if self == INFINITY:
return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if (self.__y + other.__y) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = (
(other.__y - self.__y)
* numbertheory.inverse_mod(other.__x - self.__x, p)
) % p
x3 = (l * l - self.__x - other.__x) % p
y3 = (l * (self.__x - x3) - self.__y) % p
return Point(self.__curve, x3, y3)
def __mul__(self, other):
"""Multiply a point by an integer."""
def leftmost_bit(x):
assert x > 0
result = 1
while result <= x:
result = 2 * result
return result // 2
e = other
if e == 0 or (self.__order and e % self.__order == 0):
return INFINITY
if self == INFINITY:
return INFINITY
if e < 0:
return (-self) * (-e)
# From X9.62 D.3.2:
e3 = 3 * e
negative_self = Point(self.__curve, self.__x, -self.__y, self.__order)
i = leftmost_bit(e3) // 2
result = self
# print_("Multiplying %s by %d (e3 = %d):" % (self, other, e3))
while i > 1:
result = result.double()
if (e3 & i) != 0 and (e & i) == 0:
result = result + self
if (e3 & i) == 0 and (e & i) != 0:
result = result + negative_self
# print_(". . . i = %d, result = %s" % ( i, result ))
i = i // 2
return result
def __rmul__(self, other):
"""Multiply a point by an integer."""
return self * other
def __str__(self):
if self == INFINITY:
return "infinity"
return "(%d,%d)" % (self.__x, self.__y)
def double(self):
"""Return a new point that is twice the old."""
if self == INFINITY:
return INFINITY
# X9.62 B.3:
p = self.__curve.p()
a = self.__curve.a()
l = (
(3 * self.__x * self.__x + a)
* numbertheory.inverse_mod(2 * self.__y, p)
) % p
x3 = (l * l - 2 * self.__x) % p
y3 = (l * (self.__x - x3) - self.__y) % p
return Point(self.__curve, x3, y3)
def x(self):
return self.__x
def y(self):
return self.__y
def curve(self):
return self.__curve
def order(self):
return self.__order
class PointEdwards(AbstractPoint):
"""Point on Twisted Edwards curve.
Internally represents the coordinates on the curve using four parameters,
X, Y, Z, T. They correspond to affine parameters 'x' and 'y' like so:
x = X / Z
y = Y / Z
x*y = T / Z
"""
def __init__(self, curve, x, y, z, t, order=None, generator=False):
"""
Initialise a point that uses the extended coordinates internally.
"""
super(PointEdwards, self).__init__()
self.__curve = curve
if GMPY: # pragma: no branch
self.__coords = (mpz(x), mpz(y), mpz(z), mpz(t))
self.__order = order and mpz(order)
else: # pragma: no branch
self.__coords = (x, y, z, t)
self.__order = order
self.__generator = generator
self.__precompute = []
@classmethod
def from_bytes(
cls,
curve,
data,
validate_encoding=None,
valid_encodings=None,
order=None,
generator=False,
):
"""
Initialise the object from byte encoding of a point.
`validate_encoding` and `valid_encodings` are provided for
compatibility with Weierstrass curves, they are ignored for Edwards
points.
:param data: single point encoding of the public key
:type data: :term:`bytes-like object`
:param curve: the curve on which the public key is expected to lay
:type curve: ecdsa.ellipticcurve.CurveEdTw
:param None validate_encoding: Ignored, encoding is always validated
:param None valid_encodings: Ignored, there is just one encoding
supported
:param int order: the point order, must be non zero when using
generator=True
:param bool generator: Flag to mark the point as a curve generator,
this will cause the library to pre-compute some values to
make repeated usages of the point much faster
:raises `~ecdsa.errors.MalformedPointError`: if the public point does
not lay on the curve or the encoding is invalid
:return: Initialised point on an Edwards curve
:rtype: PointEdwards
"""
coord_x, coord_y = super(PointEdwards, cls).from_bytes(
curve, data, validate_encoding, valid_encodings
)
return PointEdwards(
curve, coord_x, coord_y, 1, coord_x * coord_y, order, generator
)
def _maybe_precompute(self):
if not self.__generator or self.__precompute:
return self.__precompute
# since this code will execute just once, and it's fully deterministic,
# depend on atomicity of the last assignment to switch from empty
# self.__precompute to filled one and just ignore the unlikely
# situation when two threads execute it at the same time (as it won't
# lead to inconsistent __precompute)
order = self.__order
assert order
precompute = []
i = 1
order *= 2
coord_x, coord_y, coord_z, coord_t = self.__coords
prime = self.__curve.p()
doubler = PointEdwards(
self.__curve, coord_x, coord_y, coord_z, coord_t, order
)
# for "protection" against Minerva we need 1 or 2 more bits depending
# on order bit size, but it's easier to just calculate one
# point more always
order *= 4
while i < order:
doubler = doubler.scale()
coord_x, coord_y = doubler.x(), doubler.y()
coord_t = coord_x * coord_y % prime
precompute.append((coord_x, coord_y, coord_t))
i *= 2
doubler = doubler.double()
self.__precompute = precompute
return self.__precompute
def x(self):
"""Return affine x coordinate."""
X1, _, Z1, _ = self.__coords
if Z1 == 1:
return X1
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
return X1 * z_inv % p
def y(self):
"""Return affine y coordinate."""
_, Y1, Z1, _ = self.__coords
if Z1 == 1:
return Y1
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
return Y1 * z_inv % p
def curve(self):
"""Return the curve of the point."""
return self.__curve
def order(self):
return self.__order
def scale(self):
"""
Return point scaled so that z == 1.
Modifies point in place, returns self.
"""
X1, Y1, Z1, _ = self.__coords
if Z1 == 1:
return self
p = self.__curve.p()
z_inv = numbertheory.inverse_mod(Z1, p)
x = X1 * z_inv % p
y = Y1 * z_inv % p
t = x * y % p
self.__coords = (x, y, 1, t)
return self
def __eq__(self, other):
"""Compare for equality two points with each-other.
Note: only points on the same curve can be equal.
"""
x1, y1, z1, t1 = self.__coords
if other is INFINITY:
return not x1 or not t1
if isinstance(other, PointEdwards):
x2, y2, z2, t2 = other.__coords
else:
return NotImplemented
if self.__curve != other.curve():
return False
p = self.__curve.p()
# cross multiply to eliminate divisions
xn1 = x1 * z2 % p
xn2 = x2 * z1 % p
yn1 = y1 * z2 % p
yn2 = y2 * z1 % p
return xn1 == xn2 and yn1 == yn2
def __ne__(self, other):
"""Compare for inequality two points with each-other."""
return not self == other
def _add(self, X1, Y1, Z1, T1, X2, Y2, Z2, T2, p, a):
"""add two points, assume sane parameters."""
# after add-2008-hwcd-2
# from https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
# NOTE: there are more efficient formulas for Z1 or Z2 == 1
A = X1 * X2 % p
B = Y1 * Y2 % p
C = Z1 * T2 % p
D = T1 * Z2 % p
E = D + C
F = ((X1 - Y1) * (X2 + Y2) + B - A) % p
G = B + a * A
H = D - C
if not H:
return self._double(X1, Y1, Z1, T1, p, a)
X3 = E * F % p
Y3 = G * H % p
T3 = E * H % p
Z3 = F * G % p
return X3, Y3, Z3, T3
def __add__(self, other):
"""Add point to another."""
if other == INFINITY:
return self
if (
not isinstance(other, PointEdwards)
or self.__curve != other.__curve
):
raise ValueError("The other point is on a different curve.")
p, a = self.__curve.p(), self.__curve.a()
X1, Y1, Z1, T1 = self.__coords
X2, Y2, Z2, T2 = other.__coords
X3, Y3, Z3, T3 = self._add(X1, Y1, Z1, T1, X2, Y2, Z2, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __radd__(self, other):
"""Add other to self."""
return self + other
def _double(self, X1, Y1, Z1, T1, p, a):
"""Double the point, assume sane parameters."""
# after "dbl-2008-hwcd"
# from https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html
# NOTE: there are more efficient formulas for Z1 == 1
A = X1 * X1 % p
B = Y1 * Y1 % p
C = 2 * Z1 * Z1 % p
D = a * A % p
E = ((X1 + Y1) * (X1 + Y1) - A - B) % p
G = D + B
F = G - C
H = D - B
X3 = E * F % p
Y3 = G * H % p
T3 = E * H % p
Z3 = F * G % p
return X3, Y3, Z3, T3
def double(self):
"""Return point added to itself."""
X1, Y1, Z1, T1 = self.__coords
if not X1 or not T1:
return INFINITY
p, a = self.__curve.p(), self.__curve.a()
X3, Y3, Z3, T3 = self._double(X1, Y1, Z1, T1, p, a)
# both Ed25519 and Ed448 have prime order, so no point added to
# itself will equal zero
if not X3 or not T3: # pragma: no branch
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __rmul__(self, other):
"""Multiply point by an integer."""
return self * other
def _mul_precompute(self, other):
"""Multiply point by integer with precomputation table."""
X3, Y3, Z3, T3, p, a = 0, 1, 1, 0, self.__curve.p(), self.__curve.a()
_add = self._add
for X2, Y2, T2 in self.__precompute:
rem = other % 4
if rem == 0 or rem == 2:
other //= 2
elif rem == 3:
other = (other + 1) // 2
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, -X2, Y2, 1, -T2, p, a)
else:
assert rem == 1
other = (other - 1) // 2
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, X2, Y2, 1, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
def __mul__(self, other):
"""Multiply point by an integer."""
X2, Y2, Z2, T2 = self.__coords
if not X2 or not T2 or not other:
return INFINITY
if other == 1:
return self
if self.__order:
# order*2 as a "protection" for Minerva
other = other % (self.__order * 2)
if self._maybe_precompute():
return self._mul_precompute(other)
X3, Y3, Z3, T3 = 0, 1, 1, 0 # INFINITY in extended coordinates
p, a = self.__curve.p(), self.__curve.a()
_double = self._double
_add = self._add
for i in reversed(self._naf(other)):
X3, Y3, Z3, T3 = _double(X3, Y3, Z3, T3, p, a)
if i < 0:
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, -X2, Y2, Z2, -T2, p, a)
elif i > 0:
X3, Y3, Z3, T3 = _add(X3, Y3, Z3, T3, X2, Y2, Z2, T2, p, a)
if not X3 or not T3:
return INFINITY
return PointEdwards(self.__curve, X3, Y3, Z3, T3, self.__order)
# This one point is the Point At Infinity for all purposes:
INFINITY = Point(None, None, None)
|