File size: 13,265 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import operator
from functools import reduce
import sys
try:
import unittest2 as unittest
except ImportError:
import unittest
import hypothesis.strategies as st
import pytest
from hypothesis import given, settings, example
try:
from hypothesis import HealthCheck
HC_PRESENT = True
except ImportError: # pragma: no cover
HC_PRESENT = False
from .numbertheory import (
SquareRootError,
JacobiError,
factorization,
gcd,
lcm,
jacobi,
inverse_mod,
is_prime,
next_prime,
smallprimes,
square_root_mod_prime,
)
try:
from gmpy2 import mpz
except ImportError:
try:
from gmpy import mpz
except ImportError:
def mpz(x):
return x
BIGPRIMES = (
999671,
999683,
999721,
999727,
999749,
999763,
999769,
999773,
999809,
999853,
999863,
999883,
999907,
999917,
999931,
999953,
999959,
999961,
999979,
999983,
)
@pytest.mark.parametrize(
"prime, next_p", [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])]
)
def test_next_prime(prime, next_p):
assert next_prime(prime) == next_p
@pytest.mark.parametrize("val", [-1, 0, 1])
def test_next_prime_with_nums_less_2(val):
assert next_prime(val) == 2
@pytest.mark.slow
@pytest.mark.parametrize("prime", smallprimes)
def test_square_root_mod_prime_for_small_primes(prime):
squares = set()
for num in range(0, 1 + prime // 2):
sq = num * num % prime
squares.add(sq)
root = square_root_mod_prime(sq, prime)
# tested for real with TestNumbertheory.test_square_root_mod_prime
assert root * root % prime == sq
for nonsquare in range(0, prime):
if nonsquare in squares:
continue
with pytest.raises(SquareRootError):
square_root_mod_prime(nonsquare, prime)
def test_square_root_mod_prime_for_2():
a = square_root_mod_prime(1, 2)
assert a == 1
def test_square_root_mod_prime_for_small_prime():
root = square_root_mod_prime(98**2 % 101, 101)
assert root * root % 101 == 9
def test_square_root_mod_prime_for_p_congruent_5():
p = 13
assert p % 8 == 5
root = square_root_mod_prime(3, p)
assert root * root % p == 3
def test_square_root_mod_prime_for_p_congruent_5_large_d():
p = 29
assert p % 8 == 5
root = square_root_mod_prime(4, p)
assert root * root % p == 4
class TestSquareRootModPrime(unittest.TestCase):
def test_power_of_2_p(self):
with self.assertRaises(JacobiError):
square_root_mod_prime(12, 32)
def test_no_square(self):
with self.assertRaises(SquareRootError) as e:
square_root_mod_prime(12, 31)
self.assertIn("no square root", str(e.exception))
def test_non_prime(self):
with self.assertRaises(SquareRootError) as e:
square_root_mod_prime(12, 33)
self.assertIn("p is not prime", str(e.exception))
def test_non_prime_with_negative(self):
with self.assertRaises(SquareRootError) as e:
square_root_mod_prime(697 - 1, 697)
self.assertIn("p is not prime", str(e.exception))
@st.composite
def st_two_nums_rel_prime(draw):
# 521-bit is the biggest curve we operate on, use 1024 for a bit
# of breathing space
mod = draw(st.integers(min_value=2, max_value=2**1024))
num = draw(
st.integers(min_value=1, max_value=mod - 1).filter(
lambda x: gcd(x, mod) == 1
)
)
return num, mod
@st.composite
def st_primes(draw, *args, **kwargs):
if "min_value" not in kwargs: # pragma: no branch
kwargs["min_value"] = 1
prime = draw(
st.sampled_from(smallprimes)
| st.integers(*args, **kwargs).filter(is_prime)
)
return prime
@st.composite
def st_num_square_prime(draw):
prime = draw(st_primes(max_value=2**1024))
num = draw(st.integers(min_value=0, max_value=1 + prime // 2))
sq = num * num % prime
return sq, prime
@st.composite
def st_comp_with_com_fac(draw):
"""
Strategy that returns lists of numbers, all having a common factor.
"""
primes = draw(
st.lists(st_primes(max_value=2**512), min_size=1, max_size=10)
)
# select random prime(s) that will make the common factor of composites
com_fac_primes = draw(
st.lists(st.sampled_from(primes), min_size=1, max_size=20)
)
com_fac = reduce(operator.mul, com_fac_primes, 1)
# select at most 20 lists (returned numbers),
# each having at most 30 primes (factors) including none (then the number
# will be 1)
comp_primes = draw( # pragma: no branch
st.integers(min_value=1, max_value=20).flatmap(
lambda n: st.lists(
st.lists(st.sampled_from(primes), max_size=30),
min_size=1,
max_size=n,
)
)
)
return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes]
@st.composite
def st_comp_no_com_fac(draw):
"""
Strategy that returns lists of numbers that don't have a common factor.
"""
primes = draw(
st.lists(
st_primes(max_value=2**512), min_size=2, max_size=10, unique=True
)
)
# first select the primes that will create the uncommon factor
# between returned numbers
uncom_fac_primes = draw(
st.lists(
st.sampled_from(primes),
min_size=1,
max_size=len(primes) - 1,
unique=True,
)
)
uncom_fac = reduce(operator.mul, uncom_fac_primes, 1)
# then build composites from leftover primes
leftover_primes = [i for i in primes if i not in uncom_fac_primes]
assert leftover_primes
assert uncom_fac_primes
# select at most 20 lists, each having at most 30 primes
# selected from the leftover_primes list
number_primes = draw( # pragma: no branch
st.integers(min_value=1, max_value=20).flatmap(
lambda n: st.lists(
st.lists(st.sampled_from(leftover_primes), max_size=30),
min_size=1,
max_size=n,
)
)
)
numbers = [reduce(operator.mul, nums, 1) for nums in number_primes]
insert_at = draw(st.integers(min_value=0, max_value=len(numbers)))
numbers.insert(insert_at, uncom_fac)
return numbers
HYP_SETTINGS = {}
if HC_PRESENT: # pragma: no branch
HYP_SETTINGS["suppress_health_check"] = [
HealthCheck.filter_too_much,
HealthCheck.too_slow,
]
# the factorization() sometimes takes a long time to finish
HYP_SETTINGS["deadline"] = 5000
if "--fast" in sys.argv: # pragma: no cover
HYP_SETTINGS["max_examples"] = 20
HYP_SLOW_SETTINGS = dict(HYP_SETTINGS)
if "--fast" in sys.argv: # pragma: no cover
HYP_SLOW_SETTINGS["max_examples"] = 1
else:
HYP_SLOW_SETTINGS["max_examples"] = 20
class TestIsPrime(unittest.TestCase):
def test_very_small_prime(self):
assert is_prime(23)
def test_very_small_composite(self):
assert not is_prime(22)
def test_small_prime(self):
assert is_prime(123456791)
def test_special_composite(self):
assert not is_prime(10261)
def test_medium_prime_1(self):
# nextPrime[2^256]
assert is_prime(2**256 + 0x129)
def test_medium_prime_2(self):
# nextPrime(2^256+0x129)
assert is_prime(2**256 + 0x12D)
def test_medium_trivial_composite(self):
assert not is_prime(2**256 + 0x130)
def test_medium_non_trivial_composite(self):
assert not is_prime(2**256 + 0x12F)
def test_large_prime(self):
# nextPrime[2^2048]
assert is_prime(mpz(2) ** 2048 + 0x3D5)
def test_pseudoprime_base_19(self):
assert not is_prime(1543267864443420616877677640751301)
def test_pseudoprime_base_300(self):
# F. Arnault "Constructing Carmichael Numbers Which Are Strong
# Pseudoprimes to Several Bases". Journal of Symbolic
# Computation. 20 (2): 151-161. doi:10.1006/jsco.1995.1042.
# Section 4.4 Large Example (a pseudoprime to all bases up to
# 300)
p = int(
"29 674 495 668 685 510 550 154 174 642 905 332 730 "
"771 991 799 853 043 350 995 075 531 276 838 753 171 "
"770 199 594 238 596 428 121 188 033 664 754 218 345 "
"562 493 168 782 883".replace(" ", "")
)
assert is_prime(p)
for _ in range(10):
if not is_prime(p * (313 * (p - 1) + 1) * (353 * (p - 1) + 1)):
break
else:
assert False, "composite not detected"
class TestNumbertheory(unittest.TestCase):
def test_gcd(self):
assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5
assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5
assert gcd(3) == 3
@unittest.skipUnless(
HC_PRESENT,
"Hypothesis 2.0.0 can't be made tolerant of hard to "
"meet requirements (like `is_prime()`), the test "
"case times-out on it",
)
@settings(**HYP_SLOW_SETTINGS)
@example([877 * 1151, 877 * 1009])
@given(st_comp_with_com_fac())
def test_gcd_with_com_factor(self, numbers):
n = gcd(numbers)
assert 1 in numbers or n != 1
for i in numbers:
assert i % n == 0
@unittest.skipUnless(
HC_PRESENT,
"Hypothesis 2.0.0 can't be made tolerant of hard to "
"meet requirements (like `is_prime()`), the test "
"case times-out on it",
)
@settings(**HYP_SLOW_SETTINGS)
@example([1151, 1069, 1009])
@given(st_comp_no_com_fac())
def test_gcd_with_uncom_factor(self, numbers):
n = gcd(numbers)
assert n == 1
@settings(**HYP_SLOW_SETTINGS)
@given(
st.lists(
st.integers(min_value=1, max_value=2**8192),
min_size=1,
max_size=20,
)
)
def test_gcd_with_random_numbers(self, numbers):
n = gcd(numbers)
for i in numbers:
# check that at least it's a divider
assert i % n == 0
def test_lcm(self):
assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7
assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7
assert lcm(3) == 3
@settings(**HYP_SLOW_SETTINGS)
@given(
st.lists(
st.integers(min_value=1, max_value=2**8192),
min_size=1,
max_size=20,
)
)
def test_lcm_with_random_numbers(self, numbers):
n = lcm(numbers)
for i in numbers:
assert n % i == 0
@unittest.skipUnless(
HC_PRESENT,
"Hypothesis 2.0.0 can't be made tolerant of hard to "
"meet requirements (like `is_prime()`), the test "
"case times-out on it",
)
@settings(**HYP_SLOW_SETTINGS)
@given(st_num_square_prime())
def test_square_root_mod_prime(self, vals):
square, prime = vals
calc = square_root_mod_prime(square, prime)
assert calc * calc % prime == square
@pytest.mark.slow
@settings(**HYP_SLOW_SETTINGS)
@given(st.integers(min_value=1, max_value=10**12))
@example(265399 * 1526929)
@example(373297**2 * 553991)
def test_factorization(self, num):
factors = factorization(num)
mult = 1
for i in factors:
mult *= i[0] ** i[1]
assert mult == num
def test_factorisation_smallprimes(self):
exp = 101 * 103
assert 101 in smallprimes
assert 103 in smallprimes
factors = factorization(exp)
mult = 1
for i in factors:
mult *= i[0] ** i[1]
assert mult == exp
def test_factorisation_not_smallprimes(self):
exp = 1231 * 1237
assert 1231 not in smallprimes
assert 1237 not in smallprimes
factors = factorization(exp)
mult = 1
for i in factors:
mult *= i[0] ** i[1]
assert mult == exp
def test_jacobi_with_zero(self):
assert jacobi(0, 3) == 0
def test_jacobi_with_one(self):
assert jacobi(1, 3) == 1
@settings(**HYP_SLOW_SETTINGS)
@given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2))
def test_jacobi(self, mod):
mod = mpz(mod)
if is_prime(mod):
squares = set()
for root in range(1, mod):
root = mpz(root)
assert jacobi(root * root, mod) == 1
squares.add(root * root % mod)
for i in range(1, mod):
if i not in squares:
i = mpz(i)
assert jacobi(i, mod) == -1
else:
factors = factorization(mod)
for a in range(1, mod):
c = 1
for i in factors:
c *= jacobi(a, i[0]) ** i[1]
assert c == jacobi(a, mod)
@settings(**HYP_SLOW_SETTINGS)
@given(st_two_nums_rel_prime())
def test_inverse_mod(self, nums):
num, mod = nums
inv = inverse_mod(num, mod)
assert 0 < inv < mod
assert num * inv % mod == 1
def test_inverse_mod_with_zero(self):
assert 0 == inverse_mod(0, 11)
|