File size: 17,646 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
"""
This module includes some utility functions.
The methods most typically used are the sigencode and sigdecode functions
to be used with :func:`~ecdsa.keys.SigningKey.sign` and
:func:`~ecdsa.keys.VerifyingKey.verify`
respectively. See the :func:`sigencode_strings`, :func:`sigdecode_string`,
:func:`sigencode_der`, :func:`sigencode_strings_canonize`,
:func:`sigencode_string_canonize`, :func:`sigencode_der_canonize`,
:func:`sigdecode_strings`, :func:`sigdecode_string`, and
:func:`sigdecode_der` functions.
"""
from __future__ import division
import os
import math
import binascii
import sys
from hashlib import sha256
from six import PY2, int2byte, next
from . import der
from ._compat import normalise_bytes
# RFC5480:
# The "unrestricted" algorithm identifier is:
# id-ecPublicKey OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
# RFC5480:
# The ECDH algorithm uses the following object identifier:
# id-ecDH OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) schemes(1)
# ecdh(12) }
oid_ecDH = (1, 3, 132, 1, 12)
# RFC5480:
# The ECMQV algorithm uses the following object identifier:
# id-ecMQV OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) schemes(1)
# ecmqv(13) }
oid_ecMQV = (1, 3, 132, 1, 13)
if sys.version_info >= (3,): # pragma: no branch
def entropy_to_bits(ent_256):
"""Convert a bytestring to string of 0's and 1's"""
return bin(int.from_bytes(ent_256, "big"))[2:].zfill(len(ent_256) * 8)
else:
def entropy_to_bits(ent_256):
"""Convert a bytestring to string of 0's and 1's"""
return "".join(bin(ord(x))[2:].zfill(8) for x in ent_256)
if sys.version_info < (2, 7): # pragma: no branch
# Can't add a method to a built-in type so we are stuck with this
def bit_length(x):
return len(bin(x)) - 2
else:
def bit_length(x):
return x.bit_length() or 1
def orderlen(order):
return (1 + len("%x" % order)) // 2 # bytes
def randrange(order, entropy=None):
"""Return a random integer k such that 1 <= k < order, uniformly
distributed across that range. Worst case should be a mean of 2 loops at
(2**k)+2.
Note that this function is not declared to be forwards-compatible: we may
change the behavior in future releases. The entropy= argument (which
should get a callable that behaves like os.urandom) can be used to
achieve stability within a given release (for repeatable unit tests), but
should not be used as a long-term-compatible key generation algorithm.
"""
assert order > 1
if entropy is None:
entropy = os.urandom
upper_2 = bit_length(order - 2)
upper_256 = upper_2 // 8 + 1
while True: # I don't think this needs a counter with bit-wise randrange
ent_256 = entropy(upper_256)
ent_2 = entropy_to_bits(ent_256)
rand_num = int(ent_2[:upper_2], base=2) + 1
if 0 < rand_num < order:
return rand_num
class PRNG:
# this returns a callable which, when invoked with an integer N, will
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
# primarily for the needs of randrange_from_seed__trytryagain(), which
# only needs to run it a few times per seed. It does not provide
# protection against state compromise (forward security).
def __init__(self, seed):
self.generator = self.block_generator(seed)
def __call__(self, numbytes):
a = [next(self.generator) for i in range(numbytes)]
if PY2: # pragma: no branch
return "".join(a)
else:
return bytes(a)
def block_generator(self, seed):
counter = 0
while True:
for byte in sha256(
("prng-%d-%s" % (counter, seed)).encode()
).digest():
yield byte
counter += 1
def randrange_from_seed__overshoot_modulo(seed, order):
# hash the data, then turn the digest into a number in [1,order).
#
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
# sufficiently larger than the group order, then modulo it down to fit.
# This should give adequate (but not perfect) uniformity, and simple
# code. There are other choices: try-try-again is the main one.
base = PRNG(seed)(2 * orderlen(order))
number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1
assert 1 <= number < order, (1, number, order)
return number
def lsb_of_ones(numbits):
return (1 << numbits) - 1
def bits_and_bytes(order):
bits = int(math.log(order - 1, 2) + 1)
bytes = bits // 8
extrabits = bits % 8
return bits, bytes, extrabits
# the following randrange_from_seed__METHOD() functions take an
# arbitrarily-sized secret seed and turn it into a number that obeys the same
# range limits as randrange() above. They are meant for deriving consistent
# signing keys from a secret rather than generating them randomly, for
# example a protocol in which three signing keys are derived from a master
# secret. You should use a uniformly-distributed unguessable seed with about
# curve.baselen bytes of entropy. To use one, do this:
# seed = os.urandom(curve.baselen) # or other starting point
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
# sk = SigningKey.from_secret_exponent(secexp, curve)
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
# hash the seed, then turn the digest into a number in [1,order), but
# don't worry about trying to uniformly fill the range. This will lose,
# on average, four bits of entropy.
bits, _bytes, extrabits = bits_and_bytes(order)
if extrabits:
_bytes += 1
base = hashmod(seed).digest()[:_bytes]
base = "\x00" * (_bytes - len(base)) + base
number = 1 + int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
# like string_to_randrange_truncate_bytes, but only lose an average of
# half a bit
bits = int(math.log(order - 1, 2) + 1)
maxbytes = (bits + 7) // 8
base = hashmod(seed).digest()[:maxbytes]
base = "\x00" * (maxbytes - len(base)) + base
topbits = 8 * maxbytes - bits
if topbits:
base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
number = 1 + int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__trytryagain(seed, order):
# figure out exactly how many bits we need (rounded up to the nearest
# bit), so we can reduce the chance of looping to less than 0.5 . This is
# specified to feed from a byte-oriented PRNG, and discards the
# high-order bits of the first byte as necessary to get the right number
# of bits. The average number of loops will range from 1.0 (when
# order=2**k-1) to 2.0 (when order=2**k+1).
assert order > 1
bits, bytes, extrabits = bits_and_bytes(order)
generate = PRNG(seed)
while True:
extrabyte = b""
if extrabits:
extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
guess = string_to_number(extrabyte + generate(bytes)) + 1
if 1 <= guess < order:
return guess
def number_to_string(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2 * l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
assert len(string) == l, (len(string), l)
return string
def number_to_string_crop(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2 * l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
return string[:l]
def string_to_number(string):
return int(binascii.hexlify(string), 16)
def string_to_number_fixedlen(string, order):
l = orderlen(order)
assert len(string) == l, (len(string), l)
return int(binascii.hexlify(string), 16)
def sigencode_strings(r, s, order):
"""
Encode the signature to a pair of strings in a tuple
Encodes signature into raw encoding (:term:`raw encoding`) with the
``r`` and ``s`` parts of the signature encoded separately.
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: raw encoding of ECDSA signature
:rtype: tuple(bytes, bytes)
"""
r_str = number_to_string(r, order)
s_str = number_to_string(s, order)
return (r_str, s_str)
def sigencode_string(r, s, order):
"""
Encode the signature to raw format (:term:`raw encoding`)
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: raw encoding of ECDSA signature
:rtype: bytes
"""
# for any given curve, the size of the signature numbers is
# fixed, so just use simple concatenation
r_str, s_str = sigencode_strings(r, s, order)
return r_str + s_str
def sigencode_der(r, s, order):
"""
Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`.
Encodes the signature to the following :term:`ASN.1` structure::
Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: DER encoding of ECDSA signature
:rtype: bytes
"""
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
def sigencode_strings_canonize(r, s, order):
"""
Encode the signature to a pair of strings in a tuple
Encodes signature into raw encoding (:term:`raw encoding`) with the
``r`` and ``s`` parts of the signature encoded separately.
Makes sure that the signature is encoded in the canonical format, where
the ``s`` parameter is always smaller than ``order / 2``.
Most commonly used in bitcoin.
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: raw encoding of ECDSA signature
:rtype: tuple(bytes, bytes)
"""
if s > order / 2:
s = order - s
return sigencode_strings(r, s, order)
def sigencode_string_canonize(r, s, order):
"""
Encode the signature to raw format (:term:`raw encoding`)
Makes sure that the signature is encoded in the canonical format, where
the ``s`` parameter is always smaller than ``order / 2``.
Most commonly used in bitcoin.
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: raw encoding of ECDSA signature
:rtype: bytes
"""
if s > order / 2:
s = order - s
return sigencode_string(r, s, order)
def sigencode_der_canonize(r, s, order):
"""
Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`.
Makes sure that the signature is encoded in the canonical format, where
the ``s`` parameter is always smaller than ``order / 2``.
Most commonly used in bitcoin.
Encodes the signature to the following :term:`ASN.1` structure::
Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
It's expected that this function will be used as a ``sigencode=`` parameter
in :func:`ecdsa.keys.SigningKey.sign` method.
:param int r: first parameter of the signature
:param int s: second parameter of the signature
:param int order: the order of the curve over which the signature was
computed
:return: DER encoding of ECDSA signature
:rtype: bytes
"""
if s > order / 2:
s = order - s
return sigencode_der(r, s, order)
class MalformedSignature(Exception):
"""
Raised by decoding functions when the signature is malformed.
Malformed in this context means that the relevant strings or integers
do not match what a signature over provided curve would create. Either
because the byte strings have incorrect lengths or because the encoded
values are too large.
"""
pass
def sigdecode_string(signature, order):
"""
Decoder for :term:`raw encoding` of ECDSA signatures.
raw encoding is a simple concatenation of the two integers that comprise
the signature, with each encoded using the same amount of bytes depending
on curve size/order.
It's expected that this function will be used as the ``sigdecode=``
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
:param signature: encoded signature
:type signature: bytes like object
:param order: order of the curve over which the signature was computed
:type order: int
:raises MalformedSignature: when the encoding of the signature is invalid
:return: tuple with decoded ``r`` and ``s`` values of signature
:rtype: tuple of ints
"""
signature = normalise_bytes(signature)
l = orderlen(order)
if not len(signature) == 2 * l:
raise MalformedSignature(
"Invalid length of signature, expected {0} bytes long, "
"provided string is {1} bytes long".format(2 * l, len(signature))
)
r = string_to_number_fixedlen(signature[:l], order)
s = string_to_number_fixedlen(signature[l:], order)
return r, s
def sigdecode_strings(rs_strings, order):
"""
Decode the signature from two strings.
First string needs to be a big endian encoding of ``r``, second needs to
be a big endian encoding of the ``s`` parameter of an ECDSA signature.
It's expected that this function will be used as the ``sigdecode=``
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
:param list rs_strings: list of two bytes-like objects, each encoding one
parameter of signature
:param int order: order of the curve over which the signature was computed
:raises MalformedSignature: when the encoding of the signature is invalid
:return: tuple with decoded ``r`` and ``s`` values of signature
:rtype: tuple of ints
"""
if not len(rs_strings) == 2:
raise MalformedSignature(
"Invalid number of strings provided: {0}, expected 2".format(
len(rs_strings)
)
)
(r_str, s_str) = rs_strings
r_str = normalise_bytes(r_str)
s_str = normalise_bytes(s_str)
l = orderlen(order)
if not len(r_str) == l:
raise MalformedSignature(
"Invalid length of first string ('r' parameter), "
"expected {0} bytes long, provided string is {1} "
"bytes long".format(l, len(r_str))
)
if not len(s_str) == l:
raise MalformedSignature(
"Invalid length of second string ('s' parameter), "
"expected {0} bytes long, provided string is {1} "
"bytes long".format(l, len(s_str))
)
r = string_to_number_fixedlen(r_str, order)
s = string_to_number_fixedlen(s_str, order)
return r, s
def sigdecode_der(sig_der, order):
"""
Decoder for DER format of ECDSA signatures.
DER format of signature is one that uses the :term:`ASN.1` :term:`DER`
rules to encode it as a sequence of two integers::
Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
It's expected that this function will be used as as the ``sigdecode=``
parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method.
:param sig_der: encoded signature
:type sig_der: bytes like object
:param order: order of the curve over which the signature was computed
:type order: int
:raises UnexpectedDER: when the encoding of signature is invalid
:return: tuple with decoded ``r`` and ``s`` values of signature
:rtype: tuple of ints
"""
sig_der = normalise_bytes(sig_der)
# return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
rs_strings, empty = der.remove_sequence(sig_der)
if empty != b"":
raise der.UnexpectedDER(
"trailing junk after DER sig: %s" % binascii.hexlify(empty)
)
r, rest = der.remove_integer(rs_strings)
s, empty = der.remove_integer(rest)
if empty != b"":
raise der.UnexpectedDER(
"trailing junk after DER numbers: %s" % binascii.hexlify(empty)
)
return r, s
|