File size: 23,979 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
"""Experimental pipeline API functionality. Be careful with this API, it's subject to change."""
from __future__ import annotations
import datetime
import operator
import re
import sys
from collections import deque
from collections.abc import Container
from dataclasses import dataclass
from decimal import Decimal
from functools import cached_property, partial
from typing import TYPE_CHECKING, Any, Callable, Generic, Pattern, Protocol, TypeVar, Union, overload
import annotated_types
from typing_extensions import Annotated
if TYPE_CHECKING:
from pydantic_core import core_schema as cs
from pydantic import GetCoreSchemaHandler
from pydantic._internal._internal_dataclass import slots_true as _slots_true
if sys.version_info < (3, 10):
EllipsisType = type(Ellipsis)
else:
from types import EllipsisType
__all__ = ['validate_as', 'validate_as_deferred', 'transform']
_slots_frozen = {**_slots_true, 'frozen': True}
@dataclass(**_slots_frozen)
class _ValidateAs:
tp: type[Any]
strict: bool = False
@dataclass
class _ValidateAsDefer:
func: Callable[[], type[Any]]
@cached_property
def tp(self) -> type[Any]:
return self.func()
@dataclass(**_slots_frozen)
class _Transform:
func: Callable[[Any], Any]
@dataclass(**_slots_frozen)
class _PipelineOr:
left: _Pipeline[Any, Any]
right: _Pipeline[Any, Any]
@dataclass(**_slots_frozen)
class _PipelineAnd:
left: _Pipeline[Any, Any]
right: _Pipeline[Any, Any]
@dataclass(**_slots_frozen)
class _Eq:
value: Any
@dataclass(**_slots_frozen)
class _NotEq:
value: Any
@dataclass(**_slots_frozen)
class _In:
values: Container[Any]
@dataclass(**_slots_frozen)
class _NotIn:
values: Container[Any]
_ConstraintAnnotation = Union[
annotated_types.Le,
annotated_types.Ge,
annotated_types.Lt,
annotated_types.Gt,
annotated_types.Len,
annotated_types.MultipleOf,
annotated_types.Timezone,
annotated_types.Interval,
annotated_types.Predicate,
# common predicates not included in annotated_types
_Eq,
_NotEq,
_In,
_NotIn,
# regular expressions
Pattern[str],
]
@dataclass(**_slots_frozen)
class _Constraint:
constraint: _ConstraintAnnotation
_Step = Union[_ValidateAs, _ValidateAsDefer, _Transform, _PipelineOr, _PipelineAnd, _Constraint]
_InT = TypeVar('_InT')
_OutT = TypeVar('_OutT')
_NewOutT = TypeVar('_NewOutT')
class _FieldTypeMarker:
pass
# TODO: ultimately, make this public, see https://github.com/pydantic/pydantic/pull/9459#discussion_r1628197626
# Also, make this frozen eventually, but that doesn't work right now because of the generic base
# Which attempts to modify __orig_base__ and such.
# We could go with a manual freeze, but that seems overkill for now.
@dataclass(**_slots_true)
class _Pipeline(Generic[_InT, _OutT]):
"""Abstract representation of a chain of validation, transformation, and parsing steps."""
_steps: tuple[_Step, ...]
def transform(
self,
func: Callable[[_OutT], _NewOutT],
) -> _Pipeline[_InT, _NewOutT]:
"""Transform the output of the previous step.
If used as the first step in a pipeline, the type of the field is used.
That is, the transformation is applied to after the value is parsed to the field's type.
"""
return _Pipeline[_InT, _NewOutT](self._steps + (_Transform(func),))
@overload
def validate_as(self, tp: type[_NewOutT], *, strict: bool = ...) -> _Pipeline[_InT, _NewOutT]: ...
@overload
def validate_as(self, tp: EllipsisType, *, strict: bool = ...) -> _Pipeline[_InT, Any]: # type: ignore
...
def validate_as(self, tp: type[_NewOutT] | EllipsisType, *, strict: bool = False) -> _Pipeline[_InT, Any]: # type: ignore
"""Validate / parse the input into a new type.
If no type is provided, the type of the field is used.
Types are parsed in Pydantic's `lax` mode by default,
but you can enable `strict` mode by passing `strict=True`.
"""
if isinstance(tp, EllipsisType):
return _Pipeline[_InT, Any](self._steps + (_ValidateAs(_FieldTypeMarker, strict=strict),))
return _Pipeline[_InT, _NewOutT](self._steps + (_ValidateAs(tp, strict=strict),))
def validate_as_deferred(self, func: Callable[[], type[_NewOutT]]) -> _Pipeline[_InT, _NewOutT]:
"""Parse the input into a new type, deferring resolution of the type until the current class
is fully defined.
This is useful when you need to reference the class in it's own type annotations.
"""
return _Pipeline[_InT, _NewOutT](self._steps + (_ValidateAsDefer(func),))
# constraints
@overload
def constrain(self: _Pipeline[_InT, _NewOutGe], constraint: annotated_types.Ge) -> _Pipeline[_InT, _NewOutGe]: ...
@overload
def constrain(self: _Pipeline[_InT, _NewOutGt], constraint: annotated_types.Gt) -> _Pipeline[_InT, _NewOutGt]: ...
@overload
def constrain(self: _Pipeline[_InT, _NewOutLe], constraint: annotated_types.Le) -> _Pipeline[_InT, _NewOutLe]: ...
@overload
def constrain(self: _Pipeline[_InT, _NewOutLt], constraint: annotated_types.Lt) -> _Pipeline[_InT, _NewOutLt]: ...
@overload
def constrain(
self: _Pipeline[_InT, _NewOutLen], constraint: annotated_types.Len
) -> _Pipeline[_InT, _NewOutLen]: ...
@overload
def constrain(
self: _Pipeline[_InT, _NewOutT], constraint: annotated_types.MultipleOf
) -> _Pipeline[_InT, _NewOutT]: ...
@overload
def constrain(
self: _Pipeline[_InT, _NewOutDatetime], constraint: annotated_types.Timezone
) -> _Pipeline[_InT, _NewOutDatetime]: ...
@overload
def constrain(self: _Pipeline[_InT, _OutT], constraint: annotated_types.Predicate) -> _Pipeline[_InT, _OutT]: ...
@overload
def constrain(
self: _Pipeline[_InT, _NewOutInterval], constraint: annotated_types.Interval
) -> _Pipeline[_InT, _NewOutInterval]: ...
@overload
def constrain(self: _Pipeline[_InT, _OutT], constraint: _Eq) -> _Pipeline[_InT, _OutT]: ...
@overload
def constrain(self: _Pipeline[_InT, _OutT], constraint: _NotEq) -> _Pipeline[_InT, _OutT]: ...
@overload
def constrain(self: _Pipeline[_InT, _OutT], constraint: _In) -> _Pipeline[_InT, _OutT]: ...
@overload
def constrain(self: _Pipeline[_InT, _OutT], constraint: _NotIn) -> _Pipeline[_InT, _OutT]: ...
@overload
def constrain(self: _Pipeline[_InT, _NewOutT], constraint: Pattern[str]) -> _Pipeline[_InT, _NewOutT]: ...
def constrain(self, constraint: _ConstraintAnnotation) -> Any:
"""Constrain a value to meet a certain condition.
We support most conditions from `annotated_types`, as well as regular expressions.
Most of the time you'll be calling a shortcut method like `gt`, `lt`, `len`, etc
so you don't need to call this directly.
"""
return _Pipeline[_InT, _OutT](self._steps + (_Constraint(constraint),))
def predicate(self: _Pipeline[_InT, _NewOutT], func: Callable[[_NewOutT], bool]) -> _Pipeline[_InT, _NewOutT]:
"""Constrain a value to meet a certain predicate."""
return self.constrain(annotated_types.Predicate(func))
def gt(self: _Pipeline[_InT, _NewOutGt], gt: _NewOutGt) -> _Pipeline[_InT, _NewOutGt]:
"""Constrain a value to be greater than a certain value."""
return self.constrain(annotated_types.Gt(gt))
def lt(self: _Pipeline[_InT, _NewOutLt], lt: _NewOutLt) -> _Pipeline[_InT, _NewOutLt]:
"""Constrain a value to be less than a certain value."""
return self.constrain(annotated_types.Lt(lt))
def ge(self: _Pipeline[_InT, _NewOutGe], ge: _NewOutGe) -> _Pipeline[_InT, _NewOutGe]:
"""Constrain a value to be greater than or equal to a certain value."""
return self.constrain(annotated_types.Ge(ge))
def le(self: _Pipeline[_InT, _NewOutLe], le: _NewOutLe) -> _Pipeline[_InT, _NewOutLe]:
"""Constrain a value to be less than or equal to a certain value."""
return self.constrain(annotated_types.Le(le))
def len(self: _Pipeline[_InT, _NewOutLen], min_len: int, max_len: int | None = None) -> _Pipeline[_InT, _NewOutLen]:
"""Constrain a value to have a certain length."""
return self.constrain(annotated_types.Len(min_len, max_len))
@overload
def multiple_of(self: _Pipeline[_InT, _NewOutDiv], multiple_of: _NewOutDiv) -> _Pipeline[_InT, _NewOutDiv]: ...
@overload
def multiple_of(self: _Pipeline[_InT, _NewOutMod], multiple_of: _NewOutMod) -> _Pipeline[_InT, _NewOutMod]: ...
def multiple_of(self: _Pipeline[_InT, Any], multiple_of: Any) -> _Pipeline[_InT, Any]:
"""Constrain a value to be a multiple of a certain number."""
return self.constrain(annotated_types.MultipleOf(multiple_of))
def eq(self: _Pipeline[_InT, _OutT], value: _OutT) -> _Pipeline[_InT, _OutT]:
"""Constrain a value to be equal to a certain value."""
return self.constrain(_Eq(value))
def not_eq(self: _Pipeline[_InT, _OutT], value: _OutT) -> _Pipeline[_InT, _OutT]:
"""Constrain a value to not be equal to a certain value."""
return self.constrain(_NotEq(value))
def in_(self: _Pipeline[_InT, _OutT], values: Container[_OutT]) -> _Pipeline[_InT, _OutT]:
"""Constrain a value to be in a certain set."""
return self.constrain(_In(values))
def not_in(self: _Pipeline[_InT, _OutT], values: Container[_OutT]) -> _Pipeline[_InT, _OutT]:
"""Constrain a value to not be in a certain set."""
return self.constrain(_NotIn(values))
# timezone methods
def datetime_tz_naive(self: _Pipeline[_InT, datetime.datetime]) -> _Pipeline[_InT, datetime.datetime]:
return self.constrain(annotated_types.Timezone(None))
def datetime_tz_aware(self: _Pipeline[_InT, datetime.datetime]) -> _Pipeline[_InT, datetime.datetime]:
return self.constrain(annotated_types.Timezone(...))
def datetime_tz(
self: _Pipeline[_InT, datetime.datetime], tz: datetime.tzinfo
) -> _Pipeline[_InT, datetime.datetime]:
return self.constrain(annotated_types.Timezone(tz)) # type: ignore
def datetime_with_tz(
self: _Pipeline[_InT, datetime.datetime], tz: datetime.tzinfo | None
) -> _Pipeline[_InT, datetime.datetime]:
return self.transform(partial(datetime.datetime.replace, tzinfo=tz))
# string methods
def str_lower(self: _Pipeline[_InT, str]) -> _Pipeline[_InT, str]:
return self.transform(str.lower)
def str_upper(self: _Pipeline[_InT, str]) -> _Pipeline[_InT, str]:
return self.transform(str.upper)
def str_title(self: _Pipeline[_InT, str]) -> _Pipeline[_InT, str]:
return self.transform(str.title)
def str_strip(self: _Pipeline[_InT, str]) -> _Pipeline[_InT, str]:
return self.transform(str.strip)
def str_pattern(self: _Pipeline[_InT, str], pattern: str) -> _Pipeline[_InT, str]:
return self.constrain(re.compile(pattern))
def str_contains(self: _Pipeline[_InT, str], substring: str) -> _Pipeline[_InT, str]:
return self.predicate(lambda v: substring in v)
def str_starts_with(self: _Pipeline[_InT, str], prefix: str) -> _Pipeline[_InT, str]:
return self.predicate(lambda v: v.startswith(prefix))
def str_ends_with(self: _Pipeline[_InT, str], suffix: str) -> _Pipeline[_InT, str]:
return self.predicate(lambda v: v.endswith(suffix))
# operators
def otherwise(self, other: _Pipeline[_OtherIn, _OtherOut]) -> _Pipeline[_InT | _OtherIn, _OutT | _OtherOut]:
"""Combine two validation chains, returning the result of the first chain if it succeeds, and the second chain if it fails."""
return _Pipeline((_PipelineOr(self, other),))
__or__ = otherwise
def then(self, other: _Pipeline[_OutT, _OtherOut]) -> _Pipeline[_InT, _OtherOut]:
"""Pipe the result of one validation chain into another."""
return _Pipeline((_PipelineAnd(self, other),))
__and__ = then
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> cs.CoreSchema:
from pydantic_core import core_schema as cs
queue = deque(self._steps)
s = None
while queue:
step = queue.popleft()
s = _apply_step(step, s, handler, source_type)
s = s or cs.any_schema()
return s
def __supports_type__(self, _: _OutT) -> bool:
raise NotImplementedError
validate_as = _Pipeline[Any, Any](()).validate_as
validate_as_deferred = _Pipeline[Any, Any](()).validate_as_deferred
transform = _Pipeline[Any, Any]((_ValidateAs(_FieldTypeMarker),)).transform
def _check_func(
func: Callable[[Any], bool], predicate_err: str | Callable[[], str], s: cs.CoreSchema | None
) -> cs.CoreSchema:
from pydantic_core import core_schema as cs
def handler(v: Any) -> Any:
if func(v):
return v
raise ValueError(f'Expected {predicate_err if isinstance(predicate_err, str) else predicate_err()}')
if s is None:
return cs.no_info_plain_validator_function(handler)
else:
return cs.no_info_after_validator_function(handler, s)
def _apply_step(step: _Step, s: cs.CoreSchema | None, handler: GetCoreSchemaHandler, source_type: Any) -> cs.CoreSchema:
from pydantic_core import core_schema as cs
if isinstance(step, _ValidateAs):
s = _apply_parse(s, step.tp, step.strict, handler, source_type)
elif isinstance(step, _ValidateAsDefer):
s = _apply_parse(s, step.tp, False, handler, source_type)
elif isinstance(step, _Transform):
s = _apply_transform(s, step.func, handler)
elif isinstance(step, _Constraint):
s = _apply_constraint(s, step.constraint)
elif isinstance(step, _PipelineOr):
s = cs.union_schema([handler(step.left), handler(step.right)])
else:
assert isinstance(step, _PipelineAnd)
s = cs.chain_schema([handler(step.left), handler(step.right)])
return s
def _apply_parse(
s: cs.CoreSchema | None,
tp: type[Any],
strict: bool,
handler: GetCoreSchemaHandler,
source_type: Any,
) -> cs.CoreSchema:
from pydantic_core import core_schema as cs
from pydantic import Strict
if tp is _FieldTypeMarker:
return handler(source_type)
if strict:
tp = Annotated[tp, Strict()] # type: ignore
if s and s['type'] == 'any':
return handler(tp)
else:
return cs.chain_schema([s, handler(tp)]) if s else handler(tp)
def _apply_transform(
s: cs.CoreSchema | None, func: Callable[[Any], Any], handler: GetCoreSchemaHandler
) -> cs.CoreSchema:
from pydantic_core import core_schema as cs
if s is None:
return cs.no_info_plain_validator_function(func)
if s['type'] == 'str':
if func is str.strip:
s = s.copy()
s['strip_whitespace'] = True
return s
elif func is str.lower:
s = s.copy()
s['to_lower'] = True
return s
elif func is str.upper:
s = s.copy()
s['to_upper'] = True
return s
return cs.no_info_after_validator_function(func, s)
def _apply_constraint( # noqa: C901
s: cs.CoreSchema | None, constraint: _ConstraintAnnotation
) -> cs.CoreSchema:
"""Apply a single constraint to a schema."""
if isinstance(constraint, annotated_types.Gt):
gt = constraint.gt
if s and s['type'] in {'int', 'float', 'decimal'}:
s = s.copy()
if s['type'] == 'int' and isinstance(gt, int):
s['gt'] = gt
elif s['type'] == 'float' and isinstance(gt, float):
s['gt'] = gt
elif s['type'] == 'decimal' and isinstance(gt, Decimal):
s['gt'] = gt
else:
def check_gt(v: Any) -> bool:
return v > gt
s = _check_func(check_gt, f'> {gt}', s)
elif isinstance(constraint, annotated_types.Ge):
ge = constraint.ge
if s and s['type'] in {'int', 'float', 'decimal'}:
s = s.copy()
if s['type'] == 'int' and isinstance(ge, int):
s['ge'] = ge
elif s['type'] == 'float' and isinstance(ge, float):
s['ge'] = ge
elif s['type'] == 'decimal' and isinstance(ge, Decimal):
s['ge'] = ge
def check_ge(v: Any) -> bool:
return v >= ge
s = _check_func(check_ge, f'>= {ge}', s)
elif isinstance(constraint, annotated_types.Lt):
lt = constraint.lt
if s and s['type'] in {'int', 'float', 'decimal'}:
s = s.copy()
if s['type'] == 'int' and isinstance(lt, int):
s['lt'] = lt
elif s['type'] == 'float' and isinstance(lt, float):
s['lt'] = lt
elif s['type'] == 'decimal' and isinstance(lt, Decimal):
s['lt'] = lt
def check_lt(v: Any) -> bool:
return v < lt
s = _check_func(check_lt, f'< {lt}', s)
elif isinstance(constraint, annotated_types.Le):
le = constraint.le
if s and s['type'] in {'int', 'float', 'decimal'}:
s = s.copy()
if s['type'] == 'int' and isinstance(le, int):
s['le'] = le
elif s['type'] == 'float' and isinstance(le, float):
s['le'] = le
elif s['type'] == 'decimal' and isinstance(le, Decimal):
s['le'] = le
def check_le(v: Any) -> bool:
return v <= le
s = _check_func(check_le, f'<= {le}', s)
elif isinstance(constraint, annotated_types.Len):
min_len = constraint.min_length
max_len = constraint.max_length
if s and s['type'] in {'str', 'list', 'tuple', 'set', 'frozenset', 'dict'}:
assert (
s['type'] == 'str'
or s['type'] == 'list'
or s['type'] == 'tuple'
or s['type'] == 'set'
or s['type'] == 'dict'
or s['type'] == 'frozenset'
)
s = s.copy()
if min_len != 0:
s['min_length'] = min_len
if max_len is not None:
s['max_length'] = max_len
def check_len(v: Any) -> bool:
if max_len is not None:
return (min_len <= len(v)) and (len(v) <= max_len)
return min_len <= len(v)
s = _check_func(check_len, f'length >= {min_len} and length <= {max_len}', s)
elif isinstance(constraint, annotated_types.MultipleOf):
multiple_of = constraint.multiple_of
if s and s['type'] in {'int', 'float', 'decimal'}:
s = s.copy()
if s['type'] == 'int' and isinstance(multiple_of, int):
s['multiple_of'] = multiple_of
elif s['type'] == 'float' and isinstance(multiple_of, float):
s['multiple_of'] = multiple_of
elif s['type'] == 'decimal' and isinstance(multiple_of, Decimal):
s['multiple_of'] = multiple_of
def check_multiple_of(v: Any) -> bool:
return v % multiple_of == 0
s = _check_func(check_multiple_of, f'% {multiple_of} == 0', s)
elif isinstance(constraint, annotated_types.Timezone):
tz = constraint.tz
if tz is ...:
if s and s['type'] == 'datetime':
s = s.copy()
s['tz_constraint'] = 'aware'
else:
def check_tz_aware(v: object) -> bool:
assert isinstance(v, datetime.datetime)
return v.tzinfo is not None
s = _check_func(check_tz_aware, 'timezone aware', s)
elif tz is None:
if s and s['type'] == 'datetime':
s = s.copy()
s['tz_constraint'] = 'naive'
else:
def check_tz_naive(v: object) -> bool:
assert isinstance(v, datetime.datetime)
return v.tzinfo is None
s = _check_func(check_tz_naive, 'timezone naive', s)
else:
raise NotImplementedError('Constraining to a specific timezone is not yet supported')
elif isinstance(constraint, annotated_types.Interval):
if constraint.ge:
s = _apply_constraint(s, annotated_types.Ge(constraint.ge))
if constraint.gt:
s = _apply_constraint(s, annotated_types.Gt(constraint.gt))
if constraint.le:
s = _apply_constraint(s, annotated_types.Le(constraint.le))
if constraint.lt:
s = _apply_constraint(s, annotated_types.Lt(constraint.lt))
assert s is not None
elif isinstance(constraint, annotated_types.Predicate):
func = constraint.func
if func.__name__ == '<lambda>':
# attempt to extract the source code for a lambda function
# to use as the function name in error messages
# TODO: is there a better way? should we just not do this?
import inspect
try:
# remove ')' suffix, can use removesuffix once we drop 3.8
source = inspect.getsource(func).strip()
if source.endswith(')'):
source = source[:-1]
lambda_source_code = '`' + ''.join(''.join(source.split('lambda ')[1:]).split(':')[1:]).strip() + '`'
except OSError:
# stringified annotations
lambda_source_code = 'lambda'
s = _check_func(func, lambda_source_code, s)
else:
s = _check_func(func, func.__name__, s)
elif isinstance(constraint, _NotEq):
value = constraint.value
def check_not_eq(v: Any) -> bool:
return operator.__ne__(v, value)
s = _check_func(check_not_eq, f'!= {value}', s)
elif isinstance(constraint, _Eq):
value = constraint.value
def check_eq(v: Any) -> bool:
return operator.__eq__(v, value)
s = _check_func(check_eq, f'== {value}', s)
elif isinstance(constraint, _In):
values = constraint.values
def check_in(v: Any) -> bool:
return operator.__contains__(values, v)
s = _check_func(check_in, f'in {values}', s)
elif isinstance(constraint, _NotIn):
values = constraint.values
def check_not_in(v: Any) -> bool:
return operator.__not__(operator.__contains__(values, v))
s = _check_func(check_not_in, f'not in {values}', s)
else:
assert isinstance(constraint, Pattern)
if s and s['type'] == 'str':
s = s.copy()
s['pattern'] = constraint.pattern
else:
def check_pattern(v: object) -> bool:
assert isinstance(v, str)
return constraint.match(v) is not None
s = _check_func(check_pattern, f'~ {constraint.pattern}', s)
return s
class _SupportsRange(annotated_types.SupportsLe, annotated_types.SupportsGe, Protocol):
pass
class _SupportsLen(Protocol):
def __len__(self) -> int: ...
_NewOutGt = TypeVar('_NewOutGt', bound=annotated_types.SupportsGt)
_NewOutGe = TypeVar('_NewOutGe', bound=annotated_types.SupportsGe)
_NewOutLt = TypeVar('_NewOutLt', bound=annotated_types.SupportsLt)
_NewOutLe = TypeVar('_NewOutLe', bound=annotated_types.SupportsLe)
_NewOutLen = TypeVar('_NewOutLen', bound=_SupportsLen)
_NewOutDiv = TypeVar('_NewOutDiv', bound=annotated_types.SupportsDiv)
_NewOutMod = TypeVar('_NewOutMod', bound=annotated_types.SupportsMod)
_NewOutDatetime = TypeVar('_NewOutDatetime', bound=datetime.datetime)
_NewOutInterval = TypeVar('_NewOutInterval', bound=_SupportsRange)
_OtherIn = TypeVar('_OtherIn')
_OtherOut = TypeVar('_OtherOut')
|