File size: 106,297 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 |
"""
Usage docs: https://docs.pydantic.dev/2.5/concepts/json_schema/
The `json_schema` module contains classes and functions to allow the way [JSON Schema](https://json-schema.org/)
is generated to be customized.
In general you shouldn't need to use this module directly; instead, you can use
[`BaseModel.model_json_schema`][pydantic.BaseModel.model_json_schema] and
[`TypeAdapter.json_schema`][pydantic.TypeAdapter.json_schema].
"""
from __future__ import annotations as _annotations
import dataclasses
import inspect
import math
import re
import warnings
from collections import defaultdict
from copy import deepcopy
from dataclasses import is_dataclass
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
Counter,
Dict,
Hashable,
Iterable,
NewType,
Pattern,
Sequence,
Tuple,
TypeVar,
Union,
cast,
)
import pydantic_core
from pydantic_core import CoreSchema, PydanticOmit, core_schema, to_jsonable_python
from pydantic_core.core_schema import ComputedField
from typing_extensions import Annotated, Literal, TypeAlias, assert_never, deprecated, final
from pydantic.warnings import PydanticDeprecatedSince26
from ._internal import (
_config,
_core_metadata,
_core_utils,
_decorators,
_internal_dataclass,
_mock_val_ser,
_schema_generation_shared,
_typing_extra,
)
from .annotated_handlers import GetJsonSchemaHandler
from .config import JsonDict, JsonSchemaExtraCallable, JsonValue
from .errors import PydanticInvalidForJsonSchema, PydanticSchemaGenerationError, PydanticUserError
if TYPE_CHECKING:
from . import ConfigDict
from ._internal._core_utils import CoreSchemaField, CoreSchemaOrField
from ._internal._dataclasses import PydanticDataclass
from ._internal._schema_generation_shared import GetJsonSchemaFunction
from .main import BaseModel
CoreSchemaOrFieldType = Literal[core_schema.CoreSchemaType, core_schema.CoreSchemaFieldType]
"""
A type alias for defined schema types that represents a union of
`core_schema.CoreSchemaType` and
`core_schema.CoreSchemaFieldType`.
"""
JsonSchemaValue = Dict[str, Any]
"""
A type alias for a JSON schema value. This is a dictionary of string keys to arbitrary JSON values.
"""
JsonSchemaMode = Literal['validation', 'serialization']
"""
A type alias that represents the mode of a JSON schema; either 'validation' or 'serialization'.
For some types, the inputs to validation differ from the outputs of serialization. For example,
computed fields will only be present when serializing, and should not be provided when
validating. This flag provides a way to indicate whether you want the JSON schema required
for validation inputs, or that will be matched by serialization outputs.
"""
_MODE_TITLE_MAPPING: dict[JsonSchemaMode, str] = {'validation': 'Input', 'serialization': 'Output'}
@deprecated(
'`update_json_schema` is deprecated, use a simple `my_dict.update(update_dict)` call instead.',
category=None,
)
def update_json_schema(schema: JsonSchemaValue, updates: dict[str, Any]) -> JsonSchemaValue:
"""Update a JSON schema in-place by providing a dictionary of updates.
This function sets the provided key-value pairs in the schema and returns the updated schema.
Args:
schema: The JSON schema to update.
updates: A dictionary of key-value pairs to set in the schema.
Returns:
The updated JSON schema.
"""
schema.update(updates)
return schema
JsonSchemaWarningKind = Literal['skipped-choice', 'non-serializable-default']
"""
A type alias representing the kinds of warnings that can be emitted during JSON schema generation.
See [`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message]
for more details.
"""
class PydanticJsonSchemaWarning(UserWarning):
"""This class is used to emit warnings produced during JSON schema generation.
See the [`GenerateJsonSchema.emit_warning`][pydantic.json_schema.GenerateJsonSchema.emit_warning] and
[`GenerateJsonSchema.render_warning_message`][pydantic.json_schema.GenerateJsonSchema.render_warning_message]
methods for more details; these can be overridden to control warning behavior.
"""
# ##### JSON Schema Generation #####
DEFAULT_REF_TEMPLATE = '#/$defs/{model}'
"""The default format string used to generate reference names."""
# There are three types of references relevant to building JSON schemas:
# 1. core_schema "ref" values; these are not exposed as part of the JSON schema
# * these might look like the fully qualified path of a model, its id, or something similar
CoreRef = NewType('CoreRef', str)
# 2. keys of the "definitions" object that will eventually go into the JSON schema
# * by default, these look like "MyModel", though may change in the presence of collisions
# * eventually, we may want to make it easier to modify the way these names are generated
DefsRef = NewType('DefsRef', str)
# 3. the values corresponding to the "$ref" key in the schema
# * By default, these look like "#/$defs/MyModel", as in {"$ref": "#/$defs/MyModel"}
JsonRef = NewType('JsonRef', str)
CoreModeRef = Tuple[CoreRef, JsonSchemaMode]
JsonSchemaKeyT = TypeVar('JsonSchemaKeyT', bound=Hashable)
@dataclasses.dataclass(**_internal_dataclass.slots_true)
class _DefinitionsRemapping:
defs_remapping: dict[DefsRef, DefsRef]
json_remapping: dict[JsonRef, JsonRef]
@staticmethod
def from_prioritized_choices(
prioritized_choices: dict[DefsRef, list[DefsRef]],
defs_to_json: dict[DefsRef, JsonRef],
definitions: dict[DefsRef, JsonSchemaValue],
) -> _DefinitionsRemapping:
"""
This function should produce a remapping that replaces complex DefsRef with the simpler ones from the
prioritized_choices such that applying the name remapping would result in an equivalent JSON schema.
"""
# We need to iteratively simplify the definitions until we reach a fixed point.
# The reason for this is that outer definitions may reference inner definitions that get simplified
# into an equivalent reference, and the outer definitions won't be equivalent until we've simplified
# the inner definitions.
copied_definitions = deepcopy(definitions)
definitions_schema = {'$defs': copied_definitions}
for _iter in range(100): # prevent an infinite loop in the case of a bug, 100 iterations should be enough
# For every possible remapped DefsRef, collect all schemas that that DefsRef might be used for:
schemas_for_alternatives: dict[DefsRef, list[JsonSchemaValue]] = defaultdict(list)
for defs_ref in copied_definitions:
alternatives = prioritized_choices[defs_ref]
for alternative in alternatives:
schemas_for_alternatives[alternative].append(copied_definitions[defs_ref])
# Deduplicate the schemas for each alternative; the idea is that we only want to remap to a new DefsRef
# if it introduces no ambiguity, i.e., there is only one distinct schema for that DefsRef.
for defs_ref, schemas in schemas_for_alternatives.items():
schemas_for_alternatives[defs_ref] = _deduplicate_schemas(schemas_for_alternatives[defs_ref])
# Build the remapping
defs_remapping: dict[DefsRef, DefsRef] = {}
json_remapping: dict[JsonRef, JsonRef] = {}
for original_defs_ref in definitions:
alternatives = prioritized_choices[original_defs_ref]
# Pick the first alternative that has only one schema, since that means there is no collision
remapped_defs_ref = next(x for x in alternatives if len(schemas_for_alternatives[x]) == 1)
defs_remapping[original_defs_ref] = remapped_defs_ref
json_remapping[defs_to_json[original_defs_ref]] = defs_to_json[remapped_defs_ref]
remapping = _DefinitionsRemapping(defs_remapping, json_remapping)
new_definitions_schema = remapping.remap_json_schema({'$defs': copied_definitions})
if definitions_schema == new_definitions_schema:
# We've reached the fixed point
return remapping
definitions_schema = new_definitions_schema
raise PydanticInvalidForJsonSchema('Failed to simplify the JSON schema definitions')
def remap_defs_ref(self, ref: DefsRef) -> DefsRef:
return self.defs_remapping.get(ref, ref)
def remap_json_ref(self, ref: JsonRef) -> JsonRef:
return self.json_remapping.get(ref, ref)
def remap_json_schema(self, schema: Any) -> Any:
"""
Recursively update the JSON schema replacing all $refs
"""
if isinstance(schema, str):
# Note: this may not really be a JsonRef; we rely on having no collisions between JsonRefs and other strings
return self.remap_json_ref(JsonRef(schema))
elif isinstance(schema, list):
return [self.remap_json_schema(item) for item in schema]
elif isinstance(schema, dict):
for key, value in schema.items():
if key == '$ref' and isinstance(value, str):
schema['$ref'] = self.remap_json_ref(JsonRef(value))
elif key == '$defs':
schema['$defs'] = {
self.remap_defs_ref(DefsRef(key)): self.remap_json_schema(value)
for key, value in schema['$defs'].items()
}
else:
schema[key] = self.remap_json_schema(value)
return schema
class GenerateJsonSchema:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/json_schema/#customizing-the-json-schema-generation-process
A class for generating JSON schemas.
This class generates JSON schemas based on configured parameters. The default schema dialect
is [https://json-schema.org/draft/2020-12/schema](https://json-schema.org/draft/2020-12/schema).
The class uses `by_alias` to configure how fields with
multiple names are handled and `ref_template` to format reference names.
Attributes:
schema_dialect: The JSON schema dialect used to generate the schema. See
[Declaring a Dialect](https://json-schema.org/understanding-json-schema/reference/schema.html#id4)
in the JSON Schema documentation for more information about dialects.
ignored_warning_kinds: Warnings to ignore when generating the schema. `self.render_warning_message` will
do nothing if its argument `kind` is in `ignored_warning_kinds`;
this value can be modified on subclasses to easily control which warnings are emitted.
by_alias: Whether to use field aliases when generating the schema.
ref_template: The format string used when generating reference names.
core_to_json_refs: A mapping of core refs to JSON refs.
core_to_defs_refs: A mapping of core refs to definition refs.
defs_to_core_refs: A mapping of definition refs to core refs.
json_to_defs_refs: A mapping of JSON refs to definition refs.
definitions: Definitions in the schema.
Args:
by_alias: Whether to use field aliases in the generated schemas.
ref_template: The format string to use when generating reference names.
Raises:
JsonSchemaError: If the instance of the class is inadvertently re-used after generating a schema.
"""
schema_dialect = 'https://json-schema.org/draft/2020-12/schema'
# `self.render_warning_message` will do nothing if its argument `kind` is in `ignored_warning_kinds`;
# this value can be modified on subclasses to easily control which warnings are emitted
ignored_warning_kinds: set[JsonSchemaWarningKind] = {'skipped-choice'}
def __init__(self, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE):
self.by_alias = by_alias
self.ref_template = ref_template
self.core_to_json_refs: dict[CoreModeRef, JsonRef] = {}
self.core_to_defs_refs: dict[CoreModeRef, DefsRef] = {}
self.defs_to_core_refs: dict[DefsRef, CoreModeRef] = {}
self.json_to_defs_refs: dict[JsonRef, DefsRef] = {}
self.definitions: dict[DefsRef, JsonSchemaValue] = {}
self._config_wrapper_stack = _config.ConfigWrapperStack(_config.ConfigWrapper({}))
self._mode: JsonSchemaMode = 'validation'
# The following includes a mapping of a fully-unique defs ref choice to a list of preferred
# alternatives, which are generally simpler, such as only including the class name.
# At the end of schema generation, we use these to produce a JSON schema with more human-readable
# definitions, which would also work better in a generated OpenAPI client, etc.
self._prioritized_defsref_choices: dict[DefsRef, list[DefsRef]] = {}
self._collision_counter: dict[str, int] = defaultdict(int)
self._collision_index: dict[str, int] = {}
self._schema_type_to_method = self.build_schema_type_to_method()
# When we encounter definitions we need to try to build them immediately
# so that they are available schemas that reference them
# But it's possible that CoreSchema was never going to be used
# (e.g. because the CoreSchema that references short circuits is JSON schema generation without needing
# the reference) so instead of failing altogether if we can't build a definition we
# store the error raised and re-throw it if we end up needing that def
self._core_defs_invalid_for_json_schema: dict[DefsRef, PydanticInvalidForJsonSchema] = {}
# This changes to True after generating a schema, to prevent issues caused by accidental re-use
# of a single instance of a schema generator
self._used = False
@property
def _config(self) -> _config.ConfigWrapper:
return self._config_wrapper_stack.tail
@property
def mode(self) -> JsonSchemaMode:
if self._config.json_schema_mode_override is not None:
return self._config.json_schema_mode_override
else:
return self._mode
def build_schema_type_to_method(
self,
) -> dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]]:
"""Builds a dictionary mapping fields to methods for generating JSON schemas.
Returns:
A dictionary containing the mapping of `CoreSchemaOrFieldType` to a handler method.
Raises:
TypeError: If no method has been defined for generating a JSON schema for a given pydantic core schema type.
"""
mapping: dict[CoreSchemaOrFieldType, Callable[[CoreSchemaOrField], JsonSchemaValue]] = {}
core_schema_types: list[CoreSchemaOrFieldType] = _typing_extra.all_literal_values(
CoreSchemaOrFieldType # type: ignore
)
for key in core_schema_types:
method_name = f"{key.replace('-', '_')}_schema"
try:
mapping[key] = getattr(self, method_name)
except AttributeError as e: # pragma: no cover
raise TypeError(
f'No method for generating JsonSchema for core_schema.type={key!r} '
f'(expected: {type(self).__name__}.{method_name})'
) from e
return mapping
def generate_definitions(
self, inputs: Sequence[tuple[JsonSchemaKeyT, JsonSchemaMode, core_schema.CoreSchema]]
) -> tuple[dict[tuple[JsonSchemaKeyT, JsonSchemaMode], JsonSchemaValue], dict[DefsRef, JsonSchemaValue]]:
"""Generates JSON schema definitions from a list of core schemas, pairing the generated definitions with a
mapping that links the input keys to the definition references.
Args:
inputs: A sequence of tuples, where:
- The first element is a JSON schema key type.
- The second element is the JSON mode: either 'validation' or 'serialization'.
- The third element is a core schema.
Returns:
A tuple where:
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
JsonRef references to definitions that are defined in the second returned element.)
- The second element is a dictionary whose keys are definition references for the JSON schemas
from the first returned element, and whose values are the actual JSON schema definitions.
Raises:
PydanticUserError: Raised if the JSON schema generator has already been used to generate a JSON schema.
"""
if self._used:
raise PydanticUserError(
'This JSON schema generator has already been used to generate a JSON schema. '
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
code='json-schema-already-used',
)
for key, mode, schema in inputs:
self._mode = mode
self.generate_inner(schema)
definitions_remapping = self._build_definitions_remapping()
json_schemas_map: dict[tuple[JsonSchemaKeyT, JsonSchemaMode], DefsRef] = {}
for key, mode, schema in inputs:
self._mode = mode
json_schema = self.generate_inner(schema)
json_schemas_map[(key, mode)] = definitions_remapping.remap_json_schema(json_schema)
json_schema = {'$defs': self.definitions}
json_schema = definitions_remapping.remap_json_schema(json_schema)
self._used = True
return json_schemas_map, _sort_json_schema(json_schema['$defs']) # type: ignore
def generate(self, schema: CoreSchema, mode: JsonSchemaMode = 'validation') -> JsonSchemaValue:
"""Generates a JSON schema for a specified schema in a specified mode.
Args:
schema: A Pydantic model.
mode: The mode in which to generate the schema. Defaults to 'validation'.
Returns:
A JSON schema representing the specified schema.
Raises:
PydanticUserError: If the JSON schema generator has already been used to generate a JSON schema.
"""
self._mode = mode
if self._used:
raise PydanticUserError(
'This JSON schema generator has already been used to generate a JSON schema. '
f'You must create a new instance of {type(self).__name__} to generate a new JSON schema.',
code='json-schema-already-used',
)
json_schema: JsonSchemaValue = self.generate_inner(schema)
json_ref_counts = self.get_json_ref_counts(json_schema)
# Remove the top-level $ref if present; note that the _generate method already ensures there are no sibling keys
ref = cast(JsonRef, json_schema.get('$ref'))
while ref is not None: # may need to unpack multiple levels
ref_json_schema = self.get_schema_from_definitions(ref)
if json_ref_counts[ref] > 1 or ref_json_schema is None:
# Keep the ref, but use an allOf to remove the top level $ref
json_schema = {'allOf': [{'$ref': ref}]}
else:
# "Unpack" the ref since this is the only reference
json_schema = ref_json_schema.copy() # copy to prevent recursive dict reference
json_ref_counts[ref] -= 1
ref = cast(JsonRef, json_schema.get('$ref'))
self._garbage_collect_definitions(json_schema)
definitions_remapping = self._build_definitions_remapping()
if self.definitions:
json_schema['$defs'] = self.definitions
json_schema = definitions_remapping.remap_json_schema(json_schema)
# For now, we will not set the $schema key. However, if desired, this can be easily added by overriding
# this method and adding the following line after a call to super().generate(schema):
# json_schema['$schema'] = self.schema_dialect
self._used = True
return _sort_json_schema(json_schema)
def generate_inner(self, schema: CoreSchemaOrField) -> JsonSchemaValue: # noqa: C901
"""Generates a JSON schema for a given core schema.
Args:
schema: The given core schema.
Returns:
The generated JSON schema.
"""
# If a schema with the same CoreRef has been handled, just return a reference to it
# Note that this assumes that it will _never_ be the case that the same CoreRef is used
# on types that should have different JSON schemas
if 'ref' in schema:
core_ref = CoreRef(schema['ref']) # type: ignore[typeddict-item]
core_mode_ref = (core_ref, self.mode)
if core_mode_ref in self.core_to_defs_refs and self.core_to_defs_refs[core_mode_ref] in self.definitions:
return {'$ref': self.core_to_json_refs[core_mode_ref]}
# Generate the JSON schema, accounting for the json_schema_override and core_schema_override
metadata_handler = _core_metadata.CoreMetadataHandler(schema)
def populate_defs(core_schema: CoreSchema, json_schema: JsonSchemaValue) -> JsonSchemaValue:
if 'ref' in core_schema:
core_ref = CoreRef(core_schema['ref']) # type: ignore[typeddict-item]
defs_ref, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
json_ref = JsonRef(ref_json_schema['$ref'])
self.json_to_defs_refs[json_ref] = defs_ref
# Replace the schema if it's not a reference to itself
# What we want to avoid is having the def be just a ref to itself
# which is what would happen if we blindly assigned any
if json_schema.get('$ref', None) != json_ref:
self.definitions[defs_ref] = json_schema
self._core_defs_invalid_for_json_schema.pop(defs_ref, None)
json_schema = ref_json_schema
return json_schema
def convert_to_all_of(json_schema: JsonSchemaValue) -> JsonSchemaValue:
if '$ref' in json_schema and len(json_schema.keys()) > 1:
# technically you can't have any other keys next to a "$ref"
# but it's an easy mistake to make and not hard to correct automatically here
json_schema = json_schema.copy()
ref = json_schema.pop('$ref')
json_schema = {'allOf': [{'$ref': ref}], **json_schema}
return json_schema
def handler_func(schema_or_field: CoreSchemaOrField) -> JsonSchemaValue:
"""Generate a JSON schema based on the input schema.
Args:
schema_or_field: The core schema to generate a JSON schema from.
Returns:
The generated JSON schema.
Raises:
TypeError: If an unexpected schema type is encountered.
"""
# Generate the core-schema-type-specific bits of the schema generation:
json_schema: JsonSchemaValue | None = None
if self.mode == 'serialization' and 'serialization' in schema_or_field:
ser_schema = schema_or_field['serialization'] # type: ignore
json_schema = self.ser_schema(ser_schema)
if json_schema is None:
if _core_utils.is_core_schema(schema_or_field) or _core_utils.is_core_schema_field(schema_or_field):
generate_for_schema_type = self._schema_type_to_method[schema_or_field['type']]
json_schema = generate_for_schema_type(schema_or_field)
else:
raise TypeError(f'Unexpected schema type: schema={schema_or_field}')
if _core_utils.is_core_schema(schema_or_field):
json_schema = populate_defs(schema_or_field, json_schema)
json_schema = convert_to_all_of(json_schema)
return json_schema
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, handler_func)
for js_modify_function in metadata_handler.metadata.get('pydantic_js_functions', ()):
def new_handler_func(
schema_or_field: CoreSchemaOrField,
current_handler: GetJsonSchemaHandler = current_handler,
js_modify_function: GetJsonSchemaFunction = js_modify_function,
) -> JsonSchemaValue:
json_schema = js_modify_function(schema_or_field, current_handler)
if _core_utils.is_core_schema(schema_or_field):
json_schema = populate_defs(schema_or_field, json_schema)
original_schema = current_handler.resolve_ref_schema(json_schema)
ref = json_schema.pop('$ref', None)
if ref and json_schema:
original_schema.update(json_schema)
return original_schema
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)
for js_modify_function in metadata_handler.metadata.get('pydantic_js_annotation_functions', ()):
def new_handler_func(
schema_or_field: CoreSchemaOrField,
current_handler: GetJsonSchemaHandler = current_handler,
js_modify_function: GetJsonSchemaFunction = js_modify_function,
) -> JsonSchemaValue:
json_schema = js_modify_function(schema_or_field, current_handler)
if _core_utils.is_core_schema(schema_or_field):
json_schema = populate_defs(schema_or_field, json_schema)
json_schema = convert_to_all_of(json_schema)
return json_schema
current_handler = _schema_generation_shared.GenerateJsonSchemaHandler(self, new_handler_func)
json_schema = current_handler(schema)
if _core_utils.is_core_schema(schema):
json_schema = populate_defs(schema, json_schema)
json_schema = convert_to_all_of(json_schema)
return json_schema
# ### Schema generation methods
def any_schema(self, schema: core_schema.AnySchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches any value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {}
def none_schema(self, schema: core_schema.NoneSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches `None`.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {'type': 'null'}
def bool_schema(self, schema: core_schema.BoolSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a bool value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {'type': 'boolean'}
def int_schema(self, schema: core_schema.IntSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches an int value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema: dict[str, Any] = {'type': 'integer'}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
return json_schema
def float_schema(self, schema: core_schema.FloatSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a float value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema: dict[str, Any] = {'type': 'number'}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.numeric)
json_schema = {k: v for k, v in json_schema.items() if v not in {math.inf, -math.inf}}
return json_schema
def decimal_schema(self, schema: core_schema.DecimalSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a decimal value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = self.str_schema(core_schema.str_schema())
if self.mode == 'validation':
multiple_of = schema.get('multiple_of')
le = schema.get('le')
ge = schema.get('ge')
lt = schema.get('lt')
gt = schema.get('gt')
json_schema = {
'anyOf': [
self.float_schema(
core_schema.float_schema(
allow_inf_nan=schema.get('allow_inf_nan'),
multiple_of=None if multiple_of is None else float(multiple_of),
le=None if le is None else float(le),
ge=None if ge is None else float(ge),
lt=None if lt is None else float(lt),
gt=None if gt is None else float(gt),
)
),
json_schema,
],
}
return json_schema
def str_schema(self, schema: core_schema.StringSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a string value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = {'type': 'string'}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
if isinstance(json_schema.get('pattern'), Pattern):
# TODO: should we add regex flags to the pattern?
json_schema['pattern'] = json_schema.get('pattern').pattern # type: ignore
return json_schema
def bytes_schema(self, schema: core_schema.BytesSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a bytes value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = {'type': 'string', 'format': 'base64url' if self._config.ser_json_bytes == 'base64' else 'binary'}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.bytes)
return json_schema
def date_schema(self, schema: core_schema.DateSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a date value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = {'type': 'string', 'format': 'date'}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.date)
return json_schema
def time_schema(self, schema: core_schema.TimeSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a time value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {'type': 'string', 'format': 'time'}
def datetime_schema(self, schema: core_schema.DatetimeSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a datetime value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {'type': 'string', 'format': 'date-time'}
def timedelta_schema(self, schema: core_schema.TimedeltaSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a timedelta value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
if self._config.ser_json_timedelta == 'float':
return {'type': 'number'}
return {'type': 'string', 'format': 'duration'}
def literal_schema(self, schema: core_schema.LiteralSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a literal value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
expected = [v.value if isinstance(v, Enum) else v for v in schema['expected']]
# jsonify the expected values
expected = [to_jsonable_python(v) for v in expected]
result: dict[str, Any] = {'enum': expected}
if len(expected) == 1:
result['const'] = expected[0]
types = {type(e) for e in expected}
if types == {str}:
result['type'] = 'string'
elif types == {int}:
result['type'] = 'integer'
elif types == {float}:
result['type'] = 'numeric'
elif types == {bool}:
result['type'] = 'boolean'
elif types == {list}:
result['type'] = 'array'
elif types == {type(None)}:
result['type'] = 'null'
return result
def enum_schema(self, schema: core_schema.EnumSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches an Enum value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
enum_type = schema['cls']
description = None if not enum_type.__doc__ else inspect.cleandoc(enum_type.__doc__)
if (
description == 'An enumeration.'
): # This is the default value provided by enum.EnumMeta.__new__; don't use it
description = None
result: dict[str, Any] = {'title': enum_type.__name__, 'description': description}
result = {k: v for k, v in result.items() if v is not None}
expected = [to_jsonable_python(v.value) for v in schema['members']]
result['enum'] = expected
if len(expected) == 1:
result['const'] = expected[0]
types = {type(e) for e in expected}
if isinstance(enum_type, str) or types == {str}:
result['type'] = 'string'
elif isinstance(enum_type, int) or types == {int}:
result['type'] = 'integer'
elif isinstance(enum_type, float) or types == {float}:
result['type'] = 'numeric'
elif types == {bool}:
result['type'] = 'boolean'
elif types == {list}:
result['type'] = 'array'
return result
def is_instance_schema(self, schema: core_schema.IsInstanceSchema) -> JsonSchemaValue:
"""Handles JSON schema generation for a core schema that checks if a value is an instance of a class.
Unless overridden in a subclass, this raises an error.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.handle_invalid_for_json_schema(schema, f'core_schema.IsInstanceSchema ({schema["cls"]})')
def is_subclass_schema(self, schema: core_schema.IsSubclassSchema) -> JsonSchemaValue:
"""Handles JSON schema generation for a core schema that checks if a value is a subclass of a class.
For backwards compatibility with v1, this does not raise an error, but can be overridden to change this.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
# Note: This is for compatibility with V1; you can override if you want different behavior.
return {}
def callable_schema(self, schema: core_schema.CallableSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a callable value.
Unless overridden in a subclass, this raises an error.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.handle_invalid_for_json_schema(schema, 'core_schema.CallableSchema')
def list_schema(self, schema: core_schema.ListSchema) -> JsonSchemaValue:
"""Returns a schema that matches a list schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
json_schema = {'type': 'array', 'items': items_schema}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
return json_schema
@deprecated('`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.', category=None)
@final
def tuple_positional_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
"""Replaced by `tuple_schema`."""
warnings.warn(
'`tuple_positional_schema` is deprecated. Use `tuple_schema` instead.',
PydanticDeprecatedSince26,
stacklevel=2,
)
return self.tuple_schema(schema)
@deprecated('`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.', category=None)
@final
def tuple_variable_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
"""Replaced by `tuple_schema`."""
warnings.warn(
'`tuple_variable_schema` is deprecated. Use `tuple_schema` instead.',
PydanticDeprecatedSince26,
stacklevel=2,
)
return self.tuple_schema(schema)
def tuple_schema(self, schema: core_schema.TupleSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a tuple schema e.g. `Tuple[int,
str, bool]` or `Tuple[int, ...]`.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema: JsonSchemaValue = {'type': 'array'}
if 'variadic_item_index' in schema:
variadic_item_index = schema['variadic_item_index']
if variadic_item_index > 0:
json_schema['minItems'] = variadic_item_index
json_schema['prefixItems'] = [
self.generate_inner(item) for item in schema['items_schema'][:variadic_item_index]
]
if variadic_item_index + 1 == len(schema['items_schema']):
# if the variadic item is the last item, then represent it faithfully
json_schema['items'] = self.generate_inner(schema['items_schema'][variadic_item_index])
else:
# otherwise, 'items' represents the schema for the variadic
# item plus the suffix, so just allow anything for simplicity
# for now
json_schema['items'] = True
else:
prefixItems = [self.generate_inner(item) for item in schema['items_schema']]
if prefixItems:
json_schema['prefixItems'] = prefixItems
json_schema['minItems'] = len(prefixItems)
json_schema['maxItems'] = len(prefixItems)
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
return json_schema
def set_schema(self, schema: core_schema.SetSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a set schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._common_set_schema(schema)
def frozenset_schema(self, schema: core_schema.FrozenSetSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a frozenset schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._common_set_schema(schema)
def _common_set_schema(self, schema: core_schema.SetSchema | core_schema.FrozenSetSchema) -> JsonSchemaValue:
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
json_schema = {'type': 'array', 'uniqueItems': True, 'items': items_schema}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
return json_schema
def generator_schema(self, schema: core_schema.GeneratorSchema) -> JsonSchemaValue:
"""Returns a JSON schema that represents the provided GeneratorSchema.
Args:
schema: The schema.
Returns:
The generated JSON schema.
"""
items_schema = {} if 'items_schema' not in schema else self.generate_inner(schema['items_schema'])
json_schema = {'type': 'array', 'items': items_schema}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.array)
return json_schema
def dict_schema(self, schema: core_schema.DictSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a dict schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema: JsonSchemaValue = {'type': 'object'}
keys_schema = self.generate_inner(schema['keys_schema']).copy() if 'keys_schema' in schema else {}
keys_pattern = keys_schema.pop('pattern', None)
values_schema = self.generate_inner(schema['values_schema']).copy() if 'values_schema' in schema else {}
values_schema.pop('title', None) # don't give a title to the additionalProperties
if values_schema or keys_pattern is not None: # don't add additionalProperties if it's empty
if keys_pattern is None:
json_schema['additionalProperties'] = values_schema
else:
json_schema['patternProperties'] = {keys_pattern: values_schema}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.object)
return json_schema
def _function_schema(
self,
schema: _core_utils.AnyFunctionSchema,
) -> JsonSchemaValue:
if _core_utils.is_function_with_inner_schema(schema):
# This could be wrong if the function's mode is 'before', but in practice will often be right, and when it
# isn't, I think it would be hard to automatically infer what the desired schema should be.
return self.generate_inner(schema['schema'])
# function-plain
return self.handle_invalid_for_json_schema(
schema, f'core_schema.PlainValidatorFunctionSchema ({schema["function"]})'
)
def function_before_schema(self, schema: core_schema.BeforeValidatorFunctionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a function-before schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._function_schema(schema)
def function_after_schema(self, schema: core_schema.AfterValidatorFunctionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a function-after schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._function_schema(schema)
def function_plain_schema(self, schema: core_schema.PlainValidatorFunctionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a function-plain schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._function_schema(schema)
def function_wrap_schema(self, schema: core_schema.WrapValidatorFunctionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a function-wrap schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self._function_schema(schema)
def default_schema(self, schema: core_schema.WithDefaultSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema with a default value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = self.generate_inner(schema['schema'])
if 'default' not in schema:
return json_schema
default = schema['default']
# Note: if you want to include the value returned by the default_factory,
# override this method and replace the code above with:
# if 'default' in schema:
# default = schema['default']
# elif 'default_factory' in schema:
# default = schema['default_factory']()
# else:
# return json_schema
# we reflect the application of custom plain, no-info serializers to defaults for
# json schemas viewed in serialization mode
# TODO: improvements along with https://github.com/pydantic/pydantic/issues/8208
# TODO: improve type safety here
if self.mode == 'serialization':
if (
(ser_schema := schema['schema'].get('serialization', {}))
and (ser_func := ser_schema.get('function'))
and ser_schema.get('type') == 'function-plain' # type: ignore
and ser_schema.get('info_arg') is False # type: ignore
):
default = ser_func(default) # type: ignore
try:
encoded_default = self.encode_default(default)
except pydantic_core.PydanticSerializationError:
self.emit_warning(
'non-serializable-default',
f'Default value {default} is not JSON serializable; excluding default from JSON schema',
)
# Return the inner schema, as though there was no default
return json_schema
if '$ref' in json_schema:
# Since reference schemas do not support child keys, we wrap the reference schema in a single-case allOf:
return {'allOf': [json_schema], 'default': encoded_default}
else:
json_schema['default'] = encoded_default
return json_schema
def nullable_schema(self, schema: core_schema.NullableSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows null values.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
null_schema = {'type': 'null'}
inner_json_schema = self.generate_inner(schema['schema'])
if inner_json_schema == null_schema:
return null_schema
else:
# Thanks to the equality check against `null_schema` above, I think 'oneOf' would also be valid here;
# I'll use 'anyOf' for now, but it could be changed it if it would work better with some external tooling
return self.get_flattened_anyof([inner_json_schema, null_schema])
def union_schema(self, schema: core_schema.UnionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
generated: list[JsonSchemaValue] = []
choices = schema['choices']
for choice in choices:
# choice will be a tuple if an explicit label was provided
choice_schema = choice[0] if isinstance(choice, tuple) else choice
try:
generated.append(self.generate_inner(choice_schema))
except PydanticOmit:
continue
except PydanticInvalidForJsonSchema as exc:
self.emit_warning('skipped-choice', exc.message)
if len(generated) == 1:
return generated[0]
return self.get_flattened_anyof(generated)
def tagged_union_schema(self, schema: core_schema.TaggedUnionSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows values matching any of the given schemas, where
the schemas are tagged with a discriminator field that indicates which schema should be used to validate
the value.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
generated: dict[str, JsonSchemaValue] = {}
for k, v in schema['choices'].items():
if isinstance(k, Enum):
k = k.value
try:
# Use str(k) since keys must be strings for json; while not technically correct,
# it's the closest that can be represented in valid JSON
generated[str(k)] = self.generate_inner(v).copy()
except PydanticOmit:
continue
except PydanticInvalidForJsonSchema as exc:
self.emit_warning('skipped-choice', exc.message)
one_of_choices = _deduplicate_schemas(generated.values())
json_schema: JsonSchemaValue = {'oneOf': one_of_choices}
# This reflects the v1 behavior; TODO: we should make it possible to exclude OpenAPI stuff from the JSON schema
openapi_discriminator = self._extract_discriminator(schema, one_of_choices)
if openapi_discriminator is not None:
json_schema['discriminator'] = {
'propertyName': openapi_discriminator,
'mapping': {k: v.get('$ref', v) for k, v in generated.items()},
}
return json_schema
def _extract_discriminator(
self, schema: core_schema.TaggedUnionSchema, one_of_choices: list[JsonDict]
) -> str | None:
"""Extract a compatible OpenAPI discriminator from the schema and one_of choices that end up in the final
schema."""
openapi_discriminator: str | None = None
if isinstance(schema['discriminator'], str):
return schema['discriminator']
if isinstance(schema['discriminator'], list):
# If the discriminator is a single item list containing a string, that is equivalent to the string case
if len(schema['discriminator']) == 1 and isinstance(schema['discriminator'][0], str):
return schema['discriminator'][0]
# When an alias is used that is different from the field name, the discriminator will be a list of single
# str lists, one for the attribute and one for the actual alias. The logic here will work even if there is
# more than one possible attribute, and looks for whether a single alias choice is present as a documented
# property on all choices. If so, that property will be used as the OpenAPI discriminator.
for alias_path in schema['discriminator']:
if not isinstance(alias_path, list):
break # this means that the discriminator is not a list of alias paths
if len(alias_path) != 1:
continue # this means that the "alias" does not represent a single field
alias = alias_path[0]
if not isinstance(alias, str):
continue # this means that the "alias" does not represent a field
alias_is_present_on_all_choices = True
for choice in one_of_choices:
while '$ref' in choice:
assert isinstance(choice['$ref'], str)
choice = self.get_schema_from_definitions(JsonRef(choice['$ref'])) or {}
properties = choice.get('properties', {})
if not isinstance(properties, dict) or alias not in properties:
alias_is_present_on_all_choices = False
break
if alias_is_present_on_all_choices:
openapi_discriminator = alias
break
return openapi_discriminator
def chain_schema(self, schema: core_schema.ChainSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a core_schema.ChainSchema.
When generating a schema for validation, we return the validation JSON schema for the first step in the chain.
For serialization, we return the serialization JSON schema for the last step in the chain.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
step_index = 0 if self.mode == 'validation' else -1 # use first step for validation, last for serialization
return self.generate_inner(schema['steps'][step_index])
def lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows values matching either the lax schema or the
strict schema.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
# TODO: Need to read the default value off of model config or whatever
use_strict = schema.get('strict', False) # TODO: replace this default False
# If your JSON schema fails to generate it is probably
# because one of the following two branches failed.
if use_strict:
return self.generate_inner(schema['strict_schema'])
else:
return self.generate_inner(schema['lax_schema'])
def json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that allows values matching either the JSON schema or the
Python schema.
The JSON schema is used instead of the Python schema. If you want to use the Python schema, you should override
this method.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['json_schema'])
def typed_dict_schema(self, schema: core_schema.TypedDictSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a typed dict.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
total = schema.get('total', True)
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
(name, self.field_is_required(field, total), field)
for name, field in schema['fields'].items()
if self.field_is_present(field)
]
if self.mode == 'serialization':
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
cls = _get_typed_dict_cls(schema)
config = _get_typed_dict_config(cls)
with self._config_wrapper_stack.push(config):
json_schema = self._named_required_fields_schema(named_required_fields)
json_schema_extra = config.get('json_schema_extra')
extra = schema.get('extra_behavior')
if extra is None:
extra = config.get('extra', 'ignore')
if cls is not None:
title = config.get('title') or cls.__name__
json_schema = self._update_class_schema(json_schema, title, extra, cls, json_schema_extra)
else:
if extra == 'forbid':
json_schema['additionalProperties'] = False
elif extra == 'allow':
json_schema['additionalProperties'] = True
return json_schema
@staticmethod
def _name_required_computed_fields(
computed_fields: list[ComputedField],
) -> list[tuple[str, bool, core_schema.ComputedField]]:
return [(field['property_name'], True, field) for field in computed_fields]
def _named_required_fields_schema(
self, named_required_fields: Sequence[tuple[str, bool, CoreSchemaField]]
) -> JsonSchemaValue:
properties: dict[str, JsonSchemaValue] = {}
required_fields: list[str] = []
for name, required, field in named_required_fields:
if self.by_alias:
name = self._get_alias_name(field, name)
try:
field_json_schema = self.generate_inner(field).copy()
except PydanticOmit:
continue
if 'title' not in field_json_schema and self.field_title_should_be_set(field):
title = self.get_title_from_name(name)
field_json_schema['title'] = title
field_json_schema = self.handle_ref_overrides(field_json_schema)
properties[name] = field_json_schema
if required:
required_fields.append(name)
json_schema = {'type': 'object', 'properties': properties}
if required_fields:
json_schema['required'] = required_fields
return json_schema
def _get_alias_name(self, field: CoreSchemaField, name: str) -> str:
if field['type'] == 'computed-field':
alias: Any = field.get('alias', name)
elif self.mode == 'validation':
alias = field.get('validation_alias', name)
else:
alias = field.get('serialization_alias', name)
if isinstance(alias, str):
name = alias
elif isinstance(alias, list):
alias = cast('list[str] | str', alias)
for path in alias:
if isinstance(path, list) and len(path) == 1 and isinstance(path[0], str):
# Use the first valid single-item string path; the code that constructs the alias array
# should ensure the first such item is what belongs in the JSON schema
name = path[0]
break
else:
assert_never(alias)
return name
def typed_dict_field_schema(self, schema: core_schema.TypedDictField) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a typed dict field.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['schema'])
def dataclass_field_schema(self, schema: core_schema.DataclassField) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a dataclass field.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['schema'])
def model_field_schema(self, schema: core_schema.ModelField) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a model field.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['schema'])
def computed_field_schema(self, schema: core_schema.ComputedField) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a computed field.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['return_schema'])
def model_schema(self, schema: core_schema.ModelSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a model.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
# We do not use schema['model'].model_json_schema() here
# because it could lead to inconsistent refs handling, etc.
cls = cast('type[BaseModel]', schema['cls'])
config = cls.model_config
title = config.get('title')
with self._config_wrapper_stack.push(config):
json_schema = self.generate_inner(schema['schema'])
json_schema_extra = config.get('json_schema_extra')
if cls.__pydantic_root_model__:
root_json_schema_extra = cls.model_fields['root'].json_schema_extra
if json_schema_extra and root_json_schema_extra:
raise ValueError(
'"model_config[\'json_schema_extra\']" and "Field.json_schema_extra" on "RootModel.root"'
' field must not be set simultaneously'
)
if root_json_schema_extra:
json_schema_extra = root_json_schema_extra
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra)
return json_schema
def _update_class_schema(
self,
json_schema: JsonSchemaValue,
title: str | None,
extra: Literal['allow', 'ignore', 'forbid'] | None,
cls: type[Any],
json_schema_extra: JsonDict | JsonSchemaExtraCallable | None,
) -> JsonSchemaValue:
if '$ref' in json_schema:
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref'])) or json_schema
else:
schema_to_update = json_schema
if title is not None:
# referenced_schema['title'] = title
schema_to_update.setdefault('title', title)
if 'additionalProperties' not in schema_to_update:
if extra == 'allow':
schema_to_update['additionalProperties'] = True
elif extra == 'forbid':
schema_to_update['additionalProperties'] = False
if isinstance(json_schema_extra, (staticmethod, classmethod)):
# In older versions of python, this is necessary to ensure staticmethod/classmethods are callable
json_schema_extra = json_schema_extra.__get__(cls)
if isinstance(json_schema_extra, dict):
schema_to_update.update(json_schema_extra)
elif callable(json_schema_extra):
if len(inspect.signature(json_schema_extra).parameters) > 1:
json_schema_extra(schema_to_update, cls) # type: ignore
else:
json_schema_extra(schema_to_update) # type: ignore
elif json_schema_extra is not None:
raise ValueError(
f"model_config['json_schema_extra']={json_schema_extra} should be a dict, callable, or None"
)
if hasattr(cls, '__deprecated__'):
json_schema['deprecated'] = True
return json_schema
def resolve_schema_to_update(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
"""Resolve a JsonSchemaValue to the non-ref schema if it is a $ref schema.
Args:
json_schema: The schema to resolve.
Returns:
The resolved schema.
"""
if '$ref' in json_schema:
schema_to_update = self.get_schema_from_definitions(JsonRef(json_schema['$ref']))
if schema_to_update is None:
raise RuntimeError(f'Cannot update undefined schema for $ref={json_schema["$ref"]}')
return self.resolve_schema_to_update(schema_to_update)
else:
schema_to_update = json_schema
return schema_to_update
def model_fields_schema(self, schema: core_schema.ModelFieldsSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a model's fields.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
(name, self.field_is_required(field, total=True), field)
for name, field in schema['fields'].items()
if self.field_is_present(field)
]
if self.mode == 'serialization':
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
json_schema = self._named_required_fields_schema(named_required_fields)
extras_schema = schema.get('extras_schema', None)
if extras_schema is not None:
schema_to_update = self.resolve_schema_to_update(json_schema)
schema_to_update['additionalProperties'] = self.generate_inner(extras_schema)
return json_schema
def field_is_present(self, field: CoreSchemaField) -> bool:
"""Whether the field should be included in the generated JSON schema.
Args:
field: The schema for the field itself.
Returns:
`True` if the field should be included in the generated JSON schema, `False` otherwise.
"""
if self.mode == 'serialization':
# If you still want to include the field in the generated JSON schema,
# override this method and return True
return not field.get('serialization_exclude')
elif self.mode == 'validation':
return True
else:
assert_never(self.mode)
def field_is_required(
self,
field: core_schema.ModelField | core_schema.DataclassField | core_schema.TypedDictField,
total: bool,
) -> bool:
"""Whether the field should be marked as required in the generated JSON schema.
(Note that this is irrelevant if the field is not present in the JSON schema.).
Args:
field: The schema for the field itself.
total: Only applies to `TypedDictField`s.
Indicates if the `TypedDict` this field belongs to is total, in which case any fields that don't
explicitly specify `required=False` are required.
Returns:
`True` if the field should be marked as required in the generated JSON schema, `False` otherwise.
"""
if self.mode == 'serialization' and self._config.json_schema_serialization_defaults_required:
return not field.get('serialization_exclude')
else:
if field['type'] == 'typed-dict-field':
return field.get('required', total)
else:
return field['schema']['type'] != 'default'
def dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a dataclass's constructor arguments.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
named_required_fields: list[tuple[str, bool, CoreSchemaField]] = [
(field['name'], self.field_is_required(field, total=True), field)
for field in schema['fields']
if self.field_is_present(field)
]
if self.mode == 'serialization':
named_required_fields.extend(self._name_required_computed_fields(schema.get('computed_fields', [])))
return self._named_required_fields_schema(named_required_fields)
def dataclass_schema(self, schema: core_schema.DataclassSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a dataclass.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
cls = schema['cls']
config: ConfigDict = getattr(cls, '__pydantic_config__', cast('ConfigDict', {}))
title = config.get('title') or cls.__name__
with self._config_wrapper_stack.push(config):
json_schema = self.generate_inner(schema['schema']).copy()
json_schema_extra = config.get('json_schema_extra')
json_schema = self._update_class_schema(json_schema, title, config.get('extra', None), cls, json_schema_extra)
# Dataclass-specific handling of description
if is_dataclass(cls) and not hasattr(cls, '__pydantic_validator__'):
# vanilla dataclass; don't use cls.__doc__ as it will contain the class signature by default
description = None
else:
description = None if cls.__doc__ is None else inspect.cleandoc(cls.__doc__)
if description:
json_schema['description'] = description
return json_schema
def arguments_schema(self, schema: core_schema.ArgumentsSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a function's arguments.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
metadata = _core_metadata.CoreMetadataHandler(schema).metadata
prefer_positional = metadata.get('pydantic_js_prefer_positional_arguments')
arguments = schema['arguments_schema']
kw_only_arguments = [a for a in arguments if a.get('mode') == 'keyword_only']
kw_or_p_arguments = [a for a in arguments if a.get('mode') in {'positional_or_keyword', None}]
p_only_arguments = [a for a in arguments if a.get('mode') == 'positional_only']
var_args_schema = schema.get('var_args_schema')
var_kwargs_schema = schema.get('var_kwargs_schema')
if prefer_positional:
positional_possible = not kw_only_arguments and not var_kwargs_schema
if positional_possible:
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)
keyword_possible = not p_only_arguments and not var_args_schema
if keyword_possible:
return self.kw_arguments_schema(kw_or_p_arguments + kw_only_arguments, var_kwargs_schema)
if not prefer_positional:
positional_possible = not kw_only_arguments and not var_kwargs_schema
if positional_possible:
return self.p_arguments_schema(p_only_arguments + kw_or_p_arguments, var_args_schema)
raise PydanticInvalidForJsonSchema(
'Unable to generate JSON schema for arguments validator with positional-only and keyword-only arguments'
)
def kw_arguments_schema(
self, arguments: list[core_schema.ArgumentsParameter], var_kwargs_schema: CoreSchema | None
) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a function's keyword arguments.
Args:
arguments: The core schema.
Returns:
The generated JSON schema.
"""
properties: dict[str, JsonSchemaValue] = {}
required: list[str] = []
for argument in arguments:
name = self.get_argument_name(argument)
argument_schema = self.generate_inner(argument['schema']).copy()
argument_schema['title'] = self.get_title_from_name(name)
properties[name] = argument_schema
if argument['schema']['type'] != 'default':
# This assumes that if the argument has a default value,
# the inner schema must be of type WithDefaultSchema.
# I believe this is true, but I am not 100% sure
required.append(name)
json_schema: JsonSchemaValue = {'type': 'object', 'properties': properties}
if required:
json_schema['required'] = required
if var_kwargs_schema:
additional_properties_schema = self.generate_inner(var_kwargs_schema)
if additional_properties_schema:
json_schema['additionalProperties'] = additional_properties_schema
else:
json_schema['additionalProperties'] = False
return json_schema
def p_arguments_schema(
self, arguments: list[core_schema.ArgumentsParameter], var_args_schema: CoreSchema | None
) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a function's positional arguments.
Args:
arguments: The core schema.
Returns:
The generated JSON schema.
"""
prefix_items: list[JsonSchemaValue] = []
min_items = 0
for argument in arguments:
name = self.get_argument_name(argument)
argument_schema = self.generate_inner(argument['schema']).copy()
argument_schema['title'] = self.get_title_from_name(name)
prefix_items.append(argument_schema)
if argument['schema']['type'] != 'default':
# This assumes that if the argument has a default value,
# the inner schema must be of type WithDefaultSchema.
# I believe this is true, but I am not 100% sure
min_items += 1
json_schema: JsonSchemaValue = {'type': 'array', 'prefixItems': prefix_items}
if min_items:
json_schema['minItems'] = min_items
if var_args_schema:
items_schema = self.generate_inner(var_args_schema)
if items_schema:
json_schema['items'] = items_schema
else:
json_schema['maxItems'] = len(prefix_items)
return json_schema
def get_argument_name(self, argument: core_schema.ArgumentsParameter) -> str:
"""Retrieves the name of an argument.
Args:
argument: The core schema.
Returns:
The name of the argument.
"""
name = argument['name']
if self.by_alias:
alias = argument.get('alias')
if isinstance(alias, str):
name = alias
else:
pass # might want to do something else?
return name
def call_schema(self, schema: core_schema.CallSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a function call.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['arguments_schema'])
def custom_error_schema(self, schema: core_schema.CustomErrorSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a custom error.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return self.generate_inner(schema['schema'])
def json_schema(self, schema: core_schema.JsonSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a JSON object.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
content_core_schema = schema.get('schema') or core_schema.any_schema()
content_json_schema = self.generate_inner(content_core_schema)
if self.mode == 'validation':
return {'type': 'string', 'contentMediaType': 'application/json', 'contentSchema': content_json_schema}
else:
# self.mode == 'serialization'
return content_json_schema
def url_schema(self, schema: core_schema.UrlSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a URL.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
json_schema = {'type': 'string', 'format': 'uri', 'minLength': 1}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
return json_schema
def multi_host_url_schema(self, schema: core_schema.MultiHostUrlSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a URL that can be used with multiple hosts.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
# Note: 'multi-host-uri' is a custom/pydantic-specific format, not part of the JSON Schema spec
json_schema = {'type': 'string', 'format': 'multi-host-uri', 'minLength': 1}
self.update_with_validations(json_schema, schema, self.ValidationsMapping.string)
return json_schema
def uuid_schema(self, schema: core_schema.UuidSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a UUID.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
return {'type': 'string', 'format': 'uuid'}
def definitions_schema(self, schema: core_schema.DefinitionsSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that defines a JSON object with definitions.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
for definition in schema['definitions']:
try:
self.generate_inner(definition)
except PydanticInvalidForJsonSchema as e:
core_ref: CoreRef = CoreRef(definition['ref']) # type: ignore
self._core_defs_invalid_for_json_schema[self.get_defs_ref((core_ref, self.mode))] = e
continue
return self.generate_inner(schema['schema'])
def definition_ref_schema(self, schema: core_schema.DefinitionReferenceSchema) -> JsonSchemaValue:
"""Generates a JSON schema that matches a schema that references a definition.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
core_ref = CoreRef(schema['schema_ref'])
_, ref_json_schema = self.get_cache_defs_ref_schema(core_ref)
return ref_json_schema
def ser_schema(
self, schema: core_schema.SerSchema | core_schema.IncExSeqSerSchema | core_schema.IncExDictSerSchema
) -> JsonSchemaValue | None:
"""Generates a JSON schema that matches a schema that defines a serialized object.
Args:
schema: The core schema.
Returns:
The generated JSON schema.
"""
schema_type = schema['type']
if schema_type == 'function-plain' or schema_type == 'function-wrap':
# PlainSerializerFunctionSerSchema or WrapSerializerFunctionSerSchema
return_schema = schema.get('return_schema')
if return_schema is not None:
return self.generate_inner(return_schema)
elif schema_type == 'format' or schema_type == 'to-string':
# FormatSerSchema or ToStringSerSchema
return self.str_schema(core_schema.str_schema())
elif schema['type'] == 'model':
# ModelSerSchema
return self.generate_inner(schema['schema'])
return None
# ### Utility methods
def get_title_from_name(self, name: str) -> str:
"""Retrieves a title from a name.
Args:
name: The name to retrieve a title from.
Returns:
The title.
"""
return name.title().replace('_', ' ')
def field_title_should_be_set(self, schema: CoreSchemaOrField) -> bool:
"""Returns true if a field with the given schema should have a title set based on the field name.
Intuitively, we want this to return true for schemas that wouldn't otherwise provide their own title
(e.g., int, float, str), and false for those that would (e.g., BaseModel subclasses).
Args:
schema: The schema to check.
Returns:
`True` if the field should have a title set, `False` otherwise.
"""
if _core_utils.is_core_schema_field(schema):
if schema['type'] == 'computed-field':
field_schema = schema['return_schema']
else:
field_schema = schema['schema']
return self.field_title_should_be_set(field_schema)
elif _core_utils.is_core_schema(schema):
if schema.get('ref'): # things with refs, such as models and enums, should not have titles set
return False
if schema['type'] in {'default', 'nullable', 'definitions'}:
return self.field_title_should_be_set(schema['schema']) # type: ignore[typeddict-item]
if _core_utils.is_function_with_inner_schema(schema):
return self.field_title_should_be_set(schema['schema'])
if schema['type'] == 'definition-ref':
# Referenced schemas should not have titles set for the same reason
# schemas with refs should not
return False
return True # anything else should have title set
else:
raise PydanticInvalidForJsonSchema(f'Unexpected schema type: schema={schema}') # pragma: no cover
def normalize_name(self, name: str) -> str:
"""Normalizes a name to be used as a key in a dictionary.
Args:
name: The name to normalize.
Returns:
The normalized name.
"""
return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name).replace('.', '__')
def get_defs_ref(self, core_mode_ref: CoreModeRef) -> DefsRef:
"""Override this method to change the way that definitions keys are generated from a core reference.
Args:
core_mode_ref: The core reference.
Returns:
The definitions key.
"""
# Split the core ref into "components"; generic origins and arguments are each separate components
core_ref, mode = core_mode_ref
components = re.split(r'([\][,])', core_ref)
# Remove IDs from each component
components = [x.rsplit(':', 1)[0] for x in components]
core_ref_no_id = ''.join(components)
# Remove everything before the last period from each "component"
components = [re.sub(r'(?:[^.[\]]+\.)+((?:[^.[\]]+))', r'\1', x) for x in components]
short_ref = ''.join(components)
mode_title = _MODE_TITLE_MAPPING[mode]
# It is important that the generated defs_ref values be such that at least one choice will not
# be generated for any other core_ref. Currently, this should be the case because we include
# the id of the source type in the core_ref
name = DefsRef(self.normalize_name(short_ref))
name_mode = DefsRef(self.normalize_name(short_ref) + f'-{mode_title}')
module_qualname = DefsRef(self.normalize_name(core_ref_no_id))
module_qualname_mode = DefsRef(f'{module_qualname}-{mode_title}')
module_qualname_id = DefsRef(self.normalize_name(core_ref))
occurrence_index = self._collision_index.get(module_qualname_id)
if occurrence_index is None:
self._collision_counter[module_qualname] += 1
occurrence_index = self._collision_index[module_qualname_id] = self._collision_counter[module_qualname]
module_qualname_occurrence = DefsRef(f'{module_qualname}__{occurrence_index}')
module_qualname_occurrence_mode = DefsRef(f'{module_qualname_mode}__{occurrence_index}')
self._prioritized_defsref_choices[module_qualname_occurrence_mode] = [
name,
name_mode,
module_qualname,
module_qualname_mode,
module_qualname_occurrence,
module_qualname_occurrence_mode,
]
return module_qualname_occurrence_mode
def get_cache_defs_ref_schema(self, core_ref: CoreRef) -> tuple[DefsRef, JsonSchemaValue]:
"""This method wraps the get_defs_ref method with some cache-lookup/population logic,
and returns both the produced defs_ref and the JSON schema that will refer to the right definition.
Args:
core_ref: The core reference to get the definitions reference for.
Returns:
A tuple of the definitions reference and the JSON schema that will refer to it.
"""
core_mode_ref = (core_ref, self.mode)
maybe_defs_ref = self.core_to_defs_refs.get(core_mode_ref)
if maybe_defs_ref is not None:
json_ref = self.core_to_json_refs[core_mode_ref]
return maybe_defs_ref, {'$ref': json_ref}
defs_ref = self.get_defs_ref(core_mode_ref)
# populate the ref translation mappings
self.core_to_defs_refs[core_mode_ref] = defs_ref
self.defs_to_core_refs[defs_ref] = core_mode_ref
json_ref = JsonRef(self.ref_template.format(model=defs_ref))
self.core_to_json_refs[core_mode_ref] = json_ref
self.json_to_defs_refs[json_ref] = defs_ref
ref_json_schema = {'$ref': json_ref}
return defs_ref, ref_json_schema
def handle_ref_overrides(self, json_schema: JsonSchemaValue) -> JsonSchemaValue:
"""It is not valid for a schema with a top-level $ref to have sibling keys.
During our own schema generation, we treat sibling keys as overrides to the referenced schema,
but this is not how the official JSON schema spec works.
Because of this, we first remove any sibling keys that are redundant with the referenced schema, then if
any remain, we transform the schema from a top-level '$ref' to use allOf to move the $ref out of the top level.
(See bottom of https://swagger.io/docs/specification/using-ref/ for a reference about this behavior)
"""
if '$ref' in json_schema:
# prevent modifications to the input; this copy may be safe to drop if there is significant overhead
json_schema = json_schema.copy()
referenced_json_schema = self.get_schema_from_definitions(JsonRef(json_schema['$ref']))
if referenced_json_schema is None:
# This can happen when building schemas for models with not-yet-defined references.
# It may be a good idea to do a recursive pass at the end of the generation to remove
# any redundant override keys.
if len(json_schema) > 1:
# Make it an allOf to at least resolve the sibling keys issue
json_schema = json_schema.copy()
json_schema.setdefault('allOf', [])
json_schema['allOf'].append({'$ref': json_schema['$ref']})
del json_schema['$ref']
return json_schema
for k, v in list(json_schema.items()):
if k == '$ref':
continue
if k in referenced_json_schema and referenced_json_schema[k] == v:
del json_schema[k] # redundant key
if len(json_schema) > 1:
# There is a remaining "override" key, so we need to move $ref out of the top level
json_ref = JsonRef(json_schema['$ref'])
del json_schema['$ref']
assert 'allOf' not in json_schema # this should never happen, but just in case
json_schema['allOf'] = [{'$ref': json_ref}]
return json_schema
def get_schema_from_definitions(self, json_ref: JsonRef) -> JsonSchemaValue | None:
def_ref = self.json_to_defs_refs[json_ref]
if def_ref in self._core_defs_invalid_for_json_schema:
raise self._core_defs_invalid_for_json_schema[def_ref]
return self.definitions.get(def_ref, None)
def encode_default(self, dft: Any) -> Any:
"""Encode a default value to a JSON-serializable value.
This is used to encode default values for fields in the generated JSON schema.
Args:
dft: The default value to encode.
Returns:
The encoded default value.
"""
from .type_adapter import TypeAdapter, _type_has_config
config = self._config
try:
default = (
dft
if _type_has_config(type(dft))
else TypeAdapter(type(dft), config=config.config_dict).dump_python(dft, mode='json')
)
except PydanticSchemaGenerationError:
raise pydantic_core.PydanticSerializationError(f'Unable to encode default value {dft}')
return pydantic_core.to_jsonable_python(
default,
timedelta_mode=config.ser_json_timedelta,
bytes_mode=config.ser_json_bytes,
)
def update_with_validations(
self, json_schema: JsonSchemaValue, core_schema: CoreSchema, mapping: dict[str, str]
) -> None:
"""Update the json_schema with the corresponding validations specified in the core_schema,
using the provided mapping to translate keys in core_schema to the appropriate keys for a JSON schema.
Args:
json_schema: The JSON schema to update.
core_schema: The core schema to get the validations from.
mapping: A mapping from core_schema attribute names to the corresponding JSON schema attribute names.
"""
for core_key, json_schema_key in mapping.items():
if core_key in core_schema:
json_schema[json_schema_key] = core_schema[core_key]
class ValidationsMapping:
"""This class just contains mappings from core_schema attribute names to the corresponding
JSON schema attribute names. While I suspect it is unlikely to be necessary, you can in
principle override this class in a subclass of GenerateJsonSchema (by inheriting from
GenerateJsonSchema.ValidationsMapping) to change these mappings.
"""
numeric = {
'multiple_of': 'multipleOf',
'le': 'maximum',
'ge': 'minimum',
'lt': 'exclusiveMaximum',
'gt': 'exclusiveMinimum',
}
bytes = {
'min_length': 'minLength',
'max_length': 'maxLength',
}
string = {
'min_length': 'minLength',
'max_length': 'maxLength',
'pattern': 'pattern',
}
array = {
'min_length': 'minItems',
'max_length': 'maxItems',
}
object = {
'min_length': 'minProperties',
'max_length': 'maxProperties',
}
date = {
'le': 'maximum',
'ge': 'minimum',
'lt': 'exclusiveMaximum',
'gt': 'exclusiveMinimum',
}
def get_flattened_anyof(self, schemas: list[JsonSchemaValue]) -> JsonSchemaValue:
members = []
for schema in schemas:
if len(schema) == 1 and 'anyOf' in schema:
members.extend(schema['anyOf'])
else:
members.append(schema)
members = _deduplicate_schemas(members)
if len(members) == 1:
return members[0]
return {'anyOf': members}
def get_json_ref_counts(self, json_schema: JsonSchemaValue) -> dict[JsonRef, int]:
"""Get all values corresponding to the key '$ref' anywhere in the json_schema."""
json_refs: dict[JsonRef, int] = Counter()
def _add_json_refs(schema: Any) -> None:
if isinstance(schema, dict):
if '$ref' in schema:
json_ref = JsonRef(schema['$ref'])
if not isinstance(json_ref, str):
return # in this case, '$ref' might have been the name of a property
already_visited = json_ref in json_refs
json_refs[json_ref] += 1
if already_visited:
return # prevent recursion on a definition that was already visited
defs_ref = self.json_to_defs_refs[json_ref]
if defs_ref in self._core_defs_invalid_for_json_schema:
raise self._core_defs_invalid_for_json_schema[defs_ref]
_add_json_refs(self.definitions[defs_ref])
for v in schema.values():
_add_json_refs(v)
elif isinstance(schema, list):
for v in schema:
_add_json_refs(v)
_add_json_refs(json_schema)
return json_refs
def handle_invalid_for_json_schema(self, schema: CoreSchemaOrField, error_info: str) -> JsonSchemaValue:
raise PydanticInvalidForJsonSchema(f'Cannot generate a JsonSchema for {error_info}')
def emit_warning(self, kind: JsonSchemaWarningKind, detail: str) -> None:
"""This method simply emits PydanticJsonSchemaWarnings based on handling in the `warning_message` method."""
message = self.render_warning_message(kind, detail)
if message is not None:
warnings.warn(message, PydanticJsonSchemaWarning)
def render_warning_message(self, kind: JsonSchemaWarningKind, detail: str) -> str | None:
"""This method is responsible for ignoring warnings as desired, and for formatting the warning messages.
You can override the value of `ignored_warning_kinds` in a subclass of GenerateJsonSchema
to modify what warnings are generated. If you want more control, you can override this method;
just return None in situations where you don't want warnings to be emitted.
Args:
kind: The kind of warning to render. It can be one of the following:
- 'skipped-choice': A choice field was skipped because it had no valid choices.
- 'non-serializable-default': A default value was skipped because it was not JSON-serializable.
detail: A string with additional details about the warning.
Returns:
The formatted warning message, or `None` if no warning should be emitted.
"""
if kind in self.ignored_warning_kinds:
return None
return f'{detail} [{kind}]'
def _build_definitions_remapping(self) -> _DefinitionsRemapping:
defs_to_json: dict[DefsRef, JsonRef] = {}
for defs_refs in self._prioritized_defsref_choices.values():
for defs_ref in defs_refs:
json_ref = JsonRef(self.ref_template.format(model=defs_ref))
defs_to_json[defs_ref] = json_ref
return _DefinitionsRemapping.from_prioritized_choices(
self._prioritized_defsref_choices, defs_to_json, self.definitions
)
def _garbage_collect_definitions(self, schema: JsonSchemaValue) -> None:
visited_defs_refs: set[DefsRef] = set()
unvisited_json_refs = _get_all_json_refs(schema)
while unvisited_json_refs:
next_json_ref = unvisited_json_refs.pop()
next_defs_ref = self.json_to_defs_refs[next_json_ref]
if next_defs_ref in visited_defs_refs:
continue
visited_defs_refs.add(next_defs_ref)
unvisited_json_refs.update(_get_all_json_refs(self.definitions[next_defs_ref]))
self.definitions = {k: v for k, v in self.definitions.items() if k in visited_defs_refs}
# ##### Start JSON Schema Generation Functions #####
def model_json_schema(
cls: type[BaseModel] | type[PydanticDataclass],
by_alias: bool = True,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
mode: JsonSchemaMode = 'validation',
) -> dict[str, Any]:
"""Utility function to generate a JSON Schema for a model.
Args:
cls: The model class to generate a JSON Schema for.
by_alias: If `True` (the default), fields will be serialized according to their alias.
If `False`, fields will be serialized according to their attribute name.
ref_template: The template to use for generating JSON Schema references.
schema_generator: The class to use for generating the JSON Schema.
mode: The mode to use for generating the JSON Schema. It can be one of the following:
- 'validation': Generate a JSON Schema for validating data.
- 'serialization': Generate a JSON Schema for serializing data.
Returns:
The generated JSON Schema.
"""
from .main import BaseModel
schema_generator_instance = schema_generator(by_alias=by_alias, ref_template=ref_template)
if isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema):
cls.__pydantic_core_schema__.rebuild()
if cls is BaseModel:
raise AttributeError('model_json_schema() must be called on a subclass of BaseModel, not BaseModel itself.')
assert not isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema), 'this is a bug! please report it'
return schema_generator_instance.generate(cls.__pydantic_core_schema__, mode=mode)
def models_json_schema(
models: Sequence[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode]],
*,
by_alias: bool = True,
title: str | None = None,
description: str | None = None,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
) -> tuple[dict[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode], JsonSchemaValue], JsonSchemaValue]:
"""Utility function to generate a JSON Schema for multiple models.
Args:
models: A sequence of tuples of the form (model, mode).
by_alias: Whether field aliases should be used as keys in the generated JSON Schema.
title: The title of the generated JSON Schema.
description: The description of the generated JSON Schema.
ref_template: The reference template to use for generating JSON Schema references.
schema_generator: The schema generator to use for generating the JSON Schema.
Returns:
A tuple where:
- The first element is a dictionary whose keys are tuples of JSON schema key type and JSON mode, and
whose values are the JSON schema corresponding to that pair of inputs. (These schemas may have
JsonRef references to definitions that are defined in the second returned element.)
- The second element is a JSON schema containing all definitions referenced in the first returned
element, along with the optional title and description keys.
"""
for cls, _ in models:
if isinstance(cls.__pydantic_core_schema__, _mock_val_ser.MockCoreSchema):
cls.__pydantic_core_schema__.rebuild()
instance = schema_generator(by_alias=by_alias, ref_template=ref_template)
inputs: list[tuple[type[BaseModel] | type[PydanticDataclass], JsonSchemaMode, CoreSchema]] = [
(m, mode, m.__pydantic_core_schema__) for m, mode in models
]
json_schemas_map, definitions = instance.generate_definitions(inputs)
json_schema: dict[str, Any] = {}
if definitions:
json_schema['$defs'] = definitions
if title:
json_schema['title'] = title
if description:
json_schema['description'] = description
return json_schemas_map, json_schema
# ##### End JSON Schema Generation Functions #####
_HashableJsonValue: TypeAlias = Union[
int, float, str, bool, None, Tuple['_HashableJsonValue', ...], Tuple[Tuple[str, '_HashableJsonValue'], ...]
]
def _deduplicate_schemas(schemas: Iterable[JsonDict]) -> list[JsonDict]:
return list({_make_json_hashable(schema): schema for schema in schemas}.values())
def _make_json_hashable(value: JsonValue) -> _HashableJsonValue:
if isinstance(value, dict):
return tuple(sorted((k, _make_json_hashable(v)) for k, v in value.items()))
elif isinstance(value, list):
return tuple(_make_json_hashable(v) for v in value)
else:
return value
def _sort_json_schema(value: JsonSchemaValue, parent_key: str | None = None) -> JsonSchemaValue:
if isinstance(value, dict):
sorted_dict: dict[str, JsonSchemaValue] = {}
keys = value.keys()
if (parent_key != 'properties') and (parent_key != 'default'):
keys = sorted(keys)
for key in keys:
sorted_dict[key] = _sort_json_schema(value[key], parent_key=key)
return sorted_dict
elif isinstance(value, list):
sorted_list: list[JsonSchemaValue] = []
for item in value: # type: ignore
sorted_list.append(_sort_json_schema(item, parent_key))
return sorted_list # type: ignore
else:
return value
@dataclasses.dataclass(**_internal_dataclass.slots_true)
class WithJsonSchema:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/json_schema/#withjsonschema-annotation
Add this as an annotation on a field to override the (base) JSON schema that would be generated for that field.
This provides a way to set a JSON schema for types that would otherwise raise errors when producing a JSON schema,
such as Callable, or types that have an is-instance core schema, without needing to go so far as creating a
custom subclass of pydantic.json_schema.GenerateJsonSchema.
Note that any _modifications_ to the schema that would normally be made (such as setting the title for model fields)
will still be performed.
If `mode` is set this will only apply to that schema generation mode, allowing you
to set different json schemas for validation and serialization.
"""
json_schema: JsonSchemaValue | None
mode: Literal['validation', 'serialization'] | None = None
def __get_pydantic_json_schema__(
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
mode = self.mode or handler.mode
if mode != handler.mode:
return handler(core_schema)
if self.json_schema is None:
# This exception is handled in pydantic.json_schema.GenerateJsonSchema._named_required_fields_schema
raise PydanticOmit
else:
return self.json_schema
def __hash__(self) -> int:
return hash(type(self.mode))
@dataclasses.dataclass(**_internal_dataclass.slots_true)
class Examples:
"""Add examples to a JSON schema.
Examples should be a map of example names (strings)
to example values (any valid JSON).
If `mode` is set this will only apply to that schema generation mode,
allowing you to add different examples for validation and serialization.
"""
examples: dict[str, Any]
mode: Literal['validation', 'serialization'] | None = None
def __get_pydantic_json_schema__(
self, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
mode = self.mode or handler.mode
json_schema = handler(core_schema)
if mode != handler.mode:
return json_schema
examples = json_schema.get('examples', {})
examples.update(to_jsonable_python(self.examples))
json_schema['examples'] = examples
return json_schema
def __hash__(self) -> int:
return hash(type(self.mode))
def _get_all_json_refs(item: Any) -> set[JsonRef]:
"""Get all the definitions references from a JSON schema."""
refs: set[JsonRef] = set()
stack = [item]
while stack:
current = stack.pop()
if isinstance(current, dict):
for key, value in current.items():
if key == '$ref' and isinstance(value, str):
refs.add(JsonRef(value))
elif isinstance(value, dict):
stack.append(value)
elif isinstance(value, list):
stack.extend(value)
elif isinstance(current, list):
stack.extend(current)
return refs
AnyType = TypeVar('AnyType')
if TYPE_CHECKING:
SkipJsonSchema = Annotated[AnyType, ...]
else:
@dataclasses.dataclass(**_internal_dataclass.slots_true)
class SkipJsonSchema:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/json_schema/#skipjsonschema-annotation
Add this as an annotation on a field to skip generating a JSON schema for that field.
Example:
```py
from typing import Union
from pydantic import BaseModel
from pydantic.json_schema import SkipJsonSchema
from pprint import pprint
class Model(BaseModel):
a: Union[int, None] = None # (1)!
b: Union[int, SkipJsonSchema[None]] = None # (2)!
c: SkipJsonSchema[Union[int, None]] = None # (3)!
pprint(Model.model_json_schema())
'''
{
'properties': {
'a': {
'anyOf': [
{'type': 'integer'},
{'type': 'null'}
],
'default': None,
'title': 'A'
},
'b': {
'default': None,
'title': 'B',
'type': 'integer'
}
},
'title': 'Model',
'type': 'object'
}
'''
```
1. The integer and null types are both included in the schema for `a`.
2. The integer type is the only type included in the schema for `b`.
3. The entirety of the `c` field is omitted from the schema.
"""
def __class_getitem__(cls, item: AnyType) -> AnyType:
return Annotated[item, cls()]
def __get_pydantic_json_schema__(
self, core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue:
raise PydanticOmit
def __hash__(self) -> int:
return hash(type(self))
def _get_typed_dict_cls(schema: core_schema.TypedDictSchema) -> type[Any] | None:
metadata = _core_metadata.CoreMetadataHandler(schema).metadata
cls = metadata.get('pydantic_typed_dict_cls')
return cls
def _get_typed_dict_config(cls: type[Any] | None) -> ConfigDict:
if cls is not None:
try:
return _decorators.get_attribute_from_bases(cls, '__pydantic_config__')
except AttributeError:
pass
return {}
|