File size: 70,106 Bytes
4ae0b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 |
"""Logic for creating models."""
from __future__ import annotations as _annotations
import operator
import sys
import types
import typing
import warnings
from copy import copy, deepcopy
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Dict,
Generator,
Literal,
Set,
Tuple,
TypeVar,
Union,
cast,
overload,
)
import pydantic_core
import typing_extensions
from pydantic_core import PydanticUndefined
from typing_extensions import Self, TypeAlias, Unpack
from ._internal import (
_config,
_decorators,
_fields,
_forward_ref,
_generics,
_mock_val_ser,
_model_construction,
_repr,
_typing_extra,
_utils,
)
from ._migration import getattr_migration
from .aliases import AliasChoices, AliasPath
from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
from .config import ConfigDict
from .errors import PydanticUndefinedAnnotation, PydanticUserError
from .json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema, JsonSchemaMode, JsonSchemaValue, model_json_schema
from .plugin._schema_validator import PluggableSchemaValidator
from .warnings import PydanticDeprecatedSince20
# Always define certain types that are needed to resolve method type hints/annotations
# (even when not type checking) via typing.get_type_hints.
ModelT = TypeVar('ModelT', bound='BaseModel')
TupleGenerator = Generator[Tuple[str, Any], None, None]
# should be `set[int] | set[str] | dict[int, IncEx] | dict[str, IncEx] | None`, but mypy can't cope
IncEx: TypeAlias = Union[Set[int], Set[str], Dict[int, Any], Dict[str, Any], None]
if TYPE_CHECKING:
from inspect import Signature
from pathlib import Path
from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator
from ._internal._utils import AbstractSetIntStr, MappingIntStrAny
from .deprecated.parse import Protocol as DeprecatedParseProtocol
from .fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr
from .fields import PrivateAttr as _PrivateAttr
else:
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
# and https://youtrack.jetbrains.com/issue/PY-51428
DeprecationWarning = PydanticDeprecatedSince20
__all__ = 'BaseModel', 'create_model'
_object_setattr = _model_construction.object_setattr
class BaseModel(metaclass=_model_construction.ModelMetaclass):
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/models/
A base class for creating Pydantic models.
Attributes:
__class_vars__: The names of classvars defined on the model.
__private_attributes__: Metadata about the private attributes of the model.
__signature__: The signature for instantiating the model.
__pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
__pydantic_custom_init__: Whether the model has a custom `__init__` function.
__pydantic_decorators__: Metadata containing the decorators defined on the model.
This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.
__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to
__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__: The name of the post-init method for the model, if defined.
__pydantic_root_model__: Whether the model is a `RootModel`.
__pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
__pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
__pydantic_extra__: An instance attribute with the values of extra fields from validation when
`model_config['extra'] == 'allow'`.
__pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
__pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
"""
if TYPE_CHECKING:
# Here we provide annotations for the attributes of BaseModel.
# Many of these are populated by the metaclass, which is why this section is in a `TYPE_CHECKING` block.
# However, for the sake of easy review, we have included type annotations of all class and instance attributes
# of `BaseModel` here:
# Class attributes
model_config: ClassVar[ConfigDict]
"""
Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict].
"""
model_fields: ClassVar[dict[str, FieldInfo]]
"""
Metadata about the fields defined on the model,
mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo].
This replaces `Model.__fields__` from Pydantic V1.
"""
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]]
"""A dictionary of computed field names and their corresponding `ComputedFieldInfo` objects."""
__class_vars__: ClassVar[set[str]]
__private_attributes__: ClassVar[dict[str, ModelPrivateAttr]]
__signature__: ClassVar[Signature]
__pydantic_complete__: ClassVar[bool]
__pydantic_core_schema__: ClassVar[CoreSchema]
__pydantic_custom_init__: ClassVar[bool]
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos]
__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata]
__pydantic_parent_namespace__: ClassVar[dict[str, Any] | None]
__pydantic_post_init__: ClassVar[None | Literal['model_post_init']]
__pydantic_root_model__: ClassVar[bool]
__pydantic_serializer__: ClassVar[SchemaSerializer]
__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator]
# Instance attributes
__pydantic_extra__: dict[str, Any] | None = _PrivateAttr()
__pydantic_fields_set__: set[str] = _PrivateAttr()
__pydantic_private__: dict[str, Any] | None = _PrivateAttr()
else:
# `model_fields` and `__pydantic_decorators__` must be set for
# pydantic._internal._generate_schema.GenerateSchema.model_schema to work for a plain BaseModel annotation
model_fields = {}
model_computed_fields = {}
__pydantic_decorators__ = _decorators.DecoratorInfos()
__pydantic_parent_namespace__ = None
# Prevent `BaseModel` from being instantiated directly:
__pydantic_core_schema__ = _mock_val_ser.MockCoreSchema(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
code='base-model-instantiated',
)
__pydantic_validator__ = _mock_val_ser.MockValSer(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
val_or_ser='validator',
code='base-model-instantiated',
)
__pydantic_serializer__ = _mock_val_ser.MockValSer(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
val_or_ser='serializer',
code='base-model-instantiated',
)
__slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__'
model_config = ConfigDict()
__pydantic_complete__ = False
__pydantic_root_model__ = False
def __init__(self, /, **data: Any) -> None: # type: ignore
"""Create a new model by parsing and validating input data from keyword arguments.
Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
`self` is explicitly positional-only to allow `self` as a field name.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
self.__pydantic_validator__.validate_python(data, self_instance=self)
# The following line sets a flag that we use to determine when `__init__` gets overridden by the user
__init__.__pydantic_base_init__ = True # pyright: ignore[reportFunctionMemberAccess]
@property
def model_extra(self) -> dict[str, Any] | None:
"""Get extra fields set during validation.
Returns:
A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`.
"""
return self.__pydantic_extra__
@property
def model_fields_set(self) -> set[str]:
"""Returns the set of fields that have been explicitly set on this model instance.
Returns:
A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
"""
return self.__pydantic_fields_set__
@classmethod
def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: C901
"""Creates a new instance of the `Model` class with validated data.
Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
!!! note
`model_construct()` generally respects the `model_config.extra` setting on the provided model.
That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__`
and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored.
Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in
an error if extra values are passed, but they will be ignored.
Args:
_fields_set: The set of field names accepted for the Model instance.
values: Trusted or pre-validated data dictionary.
Returns:
A new instance of the `Model` class with validated data.
"""
m = cls.__new__(cls)
fields_values: dict[str, Any] = {}
fields_set = set()
for name, field in cls.model_fields.items():
if field.alias is not None and field.alias in values:
fields_values[name] = values.pop(field.alias)
fields_set.add(name)
if (name not in fields_set) and (field.validation_alias is not None):
validation_aliases: list[str | AliasPath] = (
field.validation_alias.choices
if isinstance(field.validation_alias, AliasChoices)
else [field.validation_alias]
)
for alias in validation_aliases:
if isinstance(alias, str) and alias in values:
fields_values[name] = values.pop(alias)
fields_set.add(name)
break
elif isinstance(alias, AliasPath):
value = alias.search_dict_for_path(values)
if value is not PydanticUndefined:
fields_values[name] = value
fields_set.add(name)
break
if name not in fields_set:
if name in values:
fields_values[name] = values.pop(name)
fields_set.add(name)
elif not field.is_required():
fields_values[name] = field.get_default(call_default_factory=True)
if _fields_set is None:
_fields_set = fields_set
_extra: dict[str, Any] | None = (
{k: v for k, v in values.items()} if cls.model_config.get('extra') == 'allow' else None
)
_object_setattr(m, '__dict__', fields_values)
_object_setattr(m, '__pydantic_fields_set__', _fields_set)
if not cls.__pydantic_root_model__:
_object_setattr(m, '__pydantic_extra__', _extra)
if cls.__pydantic_post_init__:
m.model_post_init(None)
# update private attributes with values set
if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None:
for k, v in values.items():
if k in m.__private_attributes__:
m.__pydantic_private__[k] = v
elif not cls.__pydantic_root_model__:
# Note: if there are any private attributes, cls.__pydantic_post_init__ would exist
# Since it doesn't, that means that `__pydantic_private__` should be set to None
_object_setattr(m, '__pydantic_private__', None)
return m
def model_copy(self, *, update: dict[str, Any] | None = None, deep: bool = False) -> Self:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#model_copy
Returns a copy of the model.
Args:
update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to `True` to make a deep copy of the model.
Returns:
New model instance.
"""
copied = self.__deepcopy__() if deep else self.__copy__()
if update:
if self.model_config.get('extra') == 'allow':
for k, v in update.items():
if k in self.model_fields:
copied.__dict__[k] = v
else:
if copied.__pydantic_extra__ is None:
copied.__pydantic_extra__ = {}
copied.__pydantic_extra__[k] = v
else:
copied.__dict__.update(update)
copied.__pydantic_fields_set__.update(update.keys())
return copied
def model_dump(
self,
*,
mode: Literal['json', 'python'] | str = 'python',
include: IncEx = None,
exclude: IncEx = None,
context: Any | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool | Literal['none', 'warn', 'error'] = True,
serialize_as_any: bool = False,
) -> dict[str, Any]:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
mode: The mode in which `to_python` should run.
If mode is 'json', the output will only contain JSON serializable types.
If mode is 'python', the output may contain non-JSON-serializable Python objects.
include: A set of fields to include in the output.
exclude: A set of fields to exclude from the output.
context: Additional context to pass to the serializer.
by_alias: Whether to use the field's alias in the dictionary key if defined.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of `None`.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns:
A dictionary representation of the model.
"""
return self.__pydantic_serializer__.to_python(
self,
mode=mode,
by_alias=by_alias,
include=include,
exclude=exclude,
context=context,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
round_trip=round_trip,
warnings=warnings,
serialize_as_any=serialize_as_any,
)
def model_dump_json(
self,
*,
indent: int | None = None,
include: IncEx = None,
exclude: IncEx = None,
context: Any | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool | Literal['none', 'warn', 'error'] = True,
serialize_as_any: bool = False,
) -> str:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's `to_json` method.
Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
include: Field(s) to include in the JSON output.
exclude: Field(s) to exclude from the JSON output.
context: Additional context to pass to the serializer.
by_alias: Whether to serialize using field aliases.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of `None`.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns:
A JSON string representation of the model.
"""
return self.__pydantic_serializer__.to_json(
self,
indent=indent,
include=include,
exclude=exclude,
context=context,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
round_trip=round_trip,
warnings=warnings,
serialize_as_any=serialize_as_any,
).decode()
@classmethod
def model_json_schema(
cls,
by_alias: bool = True,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
mode: JsonSchemaMode = 'validation',
) -> dict[str, Any]:
"""Generates a JSON schema for a model class.
Args:
by_alias: Whether to use attribute aliases or not.
ref_template: The reference template.
schema_generator: To override the logic used to generate the JSON schema, as a subclass of
`GenerateJsonSchema` with your desired modifications
mode: The mode in which to generate the schema.
Returns:
The JSON schema for the given model class.
"""
return model_json_schema(
cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode
)
@classmethod
def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str:
"""Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Args:
params: Tuple of types of the class. Given a generic class
`Model` with 2 type variables and a concrete model `Model[str, int]`,
the value `(str, int)` would be passed to `params`.
Returns:
String representing the new class where `params` are passed to `cls` as type variables.
Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
"""
if not issubclass(cls, typing.Generic):
raise TypeError('Concrete names should only be generated for generic models.')
# Any strings received should represent forward references, so we handle them specially below.
# If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future,
# we may be able to remove this special case.
param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params]
params_component = ', '.join(param_names)
return f'{cls.__name__}[{params_component}]'
def model_post_init(self, __context: Any) -> None:
"""Override this method to perform additional initialization after `__init__` and `model_construct`.
This is useful if you want to do some validation that requires the entire model to be initialized.
"""
pass
@classmethod
def model_rebuild(
cls,
*,
force: bool = False,
raise_errors: bool = True,
_parent_namespace_depth: int = 2,
_types_namespace: dict[str, Any] | None = None,
) -> bool | None:
"""Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
the initial attempt to build the schema, and automatic rebuilding fails.
Args:
force: Whether to force the rebuilding of the model schema, defaults to `False`.
raise_errors: Whether to raise errors, defaults to `True`.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to `None`.
Returns:
Returns `None` if the schema is already "complete" and rebuilding was not required.
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
"""
if not force and cls.__pydantic_complete__:
return None
else:
if '__pydantic_core_schema__' in cls.__dict__:
delattr(cls, '__pydantic_core_schema__') # delete cached value to ensure full rebuild happens
if _types_namespace is not None:
types_namespace: dict[str, Any] | None = _types_namespace.copy()
else:
if _parent_namespace_depth > 0:
frame_parent_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth) or {}
cls_parent_ns = (
_model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {}
)
types_namespace = {**cls_parent_ns, **frame_parent_ns}
cls.__pydantic_parent_namespace__ = _model_construction.build_lenient_weakvaluedict(types_namespace)
else:
types_namespace = _model_construction.unpack_lenient_weakvaluedict(
cls.__pydantic_parent_namespace__
)
types_namespace = _typing_extra.get_cls_types_namespace(cls, types_namespace)
# manually override defer_build so complete_model_class doesn't skip building the model again
config = {**cls.model_config, 'defer_build': False}
return _model_construction.complete_model_class(
cls,
cls.__name__,
_config.ConfigWrapper(config, check=False),
raise_errors=raise_errors,
types_namespace=types_namespace,
)
@classmethod
def model_validate(
cls,
obj: Any,
*,
strict: bool | None = None,
from_attributes: bool | None = None,
context: Any | None = None,
) -> Self:
"""Validate a pydantic model instance.
Args:
obj: The object to validate.
strict: Whether to enforce types strictly.
from_attributes: Whether to extract data from object attributes.
context: Additional context to pass to the validator.
Raises:
ValidationError: If the object could not be validated.
Returns:
The validated model instance.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
return cls.__pydantic_validator__.validate_python(
obj, strict=strict, from_attributes=from_attributes, context=context
)
@classmethod
def model_validate_json(
cls,
json_data: str | bytes | bytearray,
*,
strict: bool | None = None,
context: Any | None = None,
) -> Self:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
Args:
json_data: The JSON data to validate.
strict: Whether to enforce types strictly.
context: Extra variables to pass to the validator.
Returns:
The validated Pydantic model.
Raises:
ValueError: If `json_data` is not a JSON string.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context)
@classmethod
def model_validate_strings(
cls,
obj: Any,
*,
strict: bool | None = None,
context: Any | None = None,
) -> Self:
"""Validate the given object with string data against the Pydantic model.
Args:
obj: The object containing string data to validate.
strict: Whether to enforce types strictly.
context: Extra variables to pass to the validator.
Returns:
The validated Pydantic model.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context)
@classmethod
def __get_pydantic_core_schema__(cls, source: type[BaseModel], handler: GetCoreSchemaHandler, /) -> CoreSchema:
"""Hook into generating the model's CoreSchema.
Args:
source: The class we are generating a schema for.
This will generally be the same as the `cls` argument if this is a classmethod.
handler: A callable that calls into Pydantic's internal CoreSchema generation logic.
Returns:
A `pydantic-core` `CoreSchema`.
"""
# Only use the cached value from this _exact_ class; we don't want one from a parent class
# This is why we check `cls.__dict__` and don't use `cls.__pydantic_core_schema__` or similar.
schema = cls.__dict__.get('__pydantic_core_schema__')
if schema is not None and not isinstance(schema, _mock_val_ser.MockCoreSchema):
# Due to the way generic classes are built, it's possible that an invalid schema may be temporarily
# set on generic classes. I think we could resolve this to ensure that we get proper schema caching
# for generics, but for simplicity for now, we just always rebuild if the class has a generic origin.
if not cls.__pydantic_generic_metadata__['origin']:
return cls.__pydantic_core_schema__
return handler(source)
@classmethod
def __get_pydantic_json_schema__(
cls,
core_schema: CoreSchema,
handler: GetJsonSchemaHandler,
/,
) -> JsonSchemaValue:
"""Hook into generating the model's JSON schema.
Args:
core_schema: A `pydantic-core` CoreSchema.
You can ignore this argument and call the handler with a new CoreSchema,
wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`),
or just call the handler with the original schema.
handler: Call into Pydantic's internal JSON schema generation.
This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema
generation fails.
Since this gets called by `BaseModel.model_json_schema` you can override the
`schema_generator` argument to that function to change JSON schema generation globally
for a type.
Returns:
A JSON schema, as a Python object.
"""
return handler(core_schema)
@classmethod
def __pydantic_init_subclass__(cls, **kwargs: Any) -> None:
"""This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass`
only after the class is actually fully initialized. In particular, attributes like `model_fields` will
be present when this is called.
This is necessary because `__init_subclass__` will always be called by `type.__new__`,
and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that
`type.__new__` was called in such a manner that the class would already be sufficiently initialized.
This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely,
any kwargs passed to the class definition that aren't used internally by pydantic.
Args:
**kwargs: Any keyword arguments passed to the class definition that aren't used internally
by pydantic.
"""
pass
def __class_getitem__(
cls, typevar_values: type[Any] | tuple[type[Any], ...]
) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef:
cached = _generics.get_cached_generic_type_early(cls, typevar_values)
if cached is not None:
return cached
if cls is BaseModel:
raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel')
if not hasattr(cls, '__parameters__'):
raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic')
if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__:
raise TypeError(f'{cls} is not a generic class')
if not isinstance(typevar_values, tuple):
typevar_values = (typevar_values,)
_generics.check_parameters_count(cls, typevar_values)
# Build map from generic typevars to passed params
typevars_map: dict[_typing_extra.TypeVarType, type[Any]] = dict(
zip(cls.__pydantic_generic_metadata__['parameters'], typevar_values)
)
if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map:
submodel = cls # if arguments are equal to parameters it's the same object
_generics.set_cached_generic_type(cls, typevar_values, submodel)
else:
parent_args = cls.__pydantic_generic_metadata__['args']
if not parent_args:
args = typevar_values
else:
args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args)
origin = cls.__pydantic_generic_metadata__['origin'] or cls
model_name = origin.model_parametrized_name(args)
params = tuple(
{param: None for param in _generics.iter_contained_typevars(typevars_map.values())}
) # use dict as ordered set
with _generics.generic_recursion_self_type(origin, args) as maybe_self_type:
if maybe_self_type is not None:
return maybe_self_type
cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args)
if cached is not None:
return cached
# Attempt to rebuild the origin in case new types have been defined
try:
# depth 3 gets you above this __class_getitem__ call
origin.model_rebuild(_parent_namespace_depth=3)
except PydanticUndefinedAnnotation:
# It's okay if it fails, it just means there are still undefined types
# that could be evaluated later.
# TODO: Make sure validation fails if there are still undefined types, perhaps using MockValidator
pass
submodel = _generics.create_generic_submodel(model_name, origin, args, params)
# Update cache
_generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args)
return submodel
def __copy__(self) -> Self:
"""Returns a shallow copy of the model."""
cls = type(self)
m = cls.__new__(cls)
_object_setattr(m, '__dict__', copy(self.__dict__))
_object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__))
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
_object_setattr(m, '__pydantic_private__', None)
else:
_object_setattr(
m,
'__pydantic_private__',
{k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined},
)
return m
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
"""Returns a deep copy of the model."""
cls = type(self)
m = cls.__new__(cls)
_object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo))
_object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo))
# This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str],
# and attempting a deepcopy would be marginally slower.
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
_object_setattr(m, '__pydantic_private__', None)
else:
_object_setattr(
m,
'__pydantic_private__',
deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo),
)
return m
if not TYPE_CHECKING:
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
# The same goes for __setattr__ and __delattr__, see: https://github.com/pydantic/pydantic/issues/8643
def __getattr__(self, item: str) -> Any:
private_attributes = object.__getattribute__(self, '__private_attributes__')
if item in private_attributes:
attribute = private_attributes[item]
if hasattr(attribute, '__get__'):
return attribute.__get__(self, type(self)) # type: ignore
try:
# Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
return self.__pydantic_private__[item] # type: ignore
except KeyError as exc:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
else:
# `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
# See `BaseModel.__repr_args__` for more details
try:
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
except AttributeError:
pydantic_extra = None
if pydantic_extra:
try:
return pydantic_extra[item]
except KeyError as exc:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
else:
if hasattr(self.__class__, item):
return super().__getattribute__(item) # Raises AttributeError if appropriate
else:
# this is the current error
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
def __setattr__(self, name: str, value: Any) -> None:
if name in self.__class_vars__:
raise AttributeError(
f'{name!r} is a ClassVar of `{self.__class__.__name__}` and cannot be set on an instance. '
f'If you want to set a value on the class, use `{self.__class__.__name__}.{name} = value`.'
)
elif not _fields.is_valid_field_name(name):
if self.__pydantic_private__ is None or name not in self.__private_attributes__:
_object_setattr(self, name, value)
else:
attribute = self.__private_attributes__[name]
if hasattr(attribute, '__set__'):
attribute.__set__(self, value) # type: ignore
else:
self.__pydantic_private__[name] = value
return
self._check_frozen(name, value)
attr = getattr(self.__class__, name, None)
if isinstance(attr, property):
attr.__set__(self, value)
elif self.model_config.get('validate_assignment', None):
self.__pydantic_validator__.validate_assignment(self, name, value)
elif self.model_config.get('extra') != 'allow' and name not in self.model_fields:
# TODO - matching error
raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"')
elif self.model_config.get('extra') == 'allow' and name not in self.model_fields:
if self.model_extra and name in self.model_extra:
self.__pydantic_extra__[name] = value # type: ignore
else:
try:
getattr(self, name)
except AttributeError:
# attribute does not already exist on instance, so put it in extra
self.__pydantic_extra__[name] = value # type: ignore
else:
# attribute _does_ already exist on instance, and was not in extra, so update it
_object_setattr(self, name, value)
else:
self.__dict__[name] = value
self.__pydantic_fields_set__.add(name)
def __delattr__(self, item: str) -> Any:
if item in self.__private_attributes__:
attribute = self.__private_attributes__[item]
if hasattr(attribute, '__delete__'):
attribute.__delete__(self) # type: ignore
return
try:
# Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
del self.__pydantic_private__[item] # type: ignore
return
except KeyError as exc:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
self._check_frozen(item, None)
if item in self.model_fields:
object.__delattr__(self, item)
elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__:
del self.__pydantic_extra__[item]
else:
try:
object.__delattr__(self, item)
except AttributeError:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
def _check_frozen(self, name: str, value: Any) -> None:
if self.model_config.get('frozen', None):
typ = 'frozen_instance'
elif getattr(self.model_fields.get(name), 'frozen', False):
typ = 'frozen_field'
else:
return
error: pydantic_core.InitErrorDetails = {
'type': typ,
'loc': (name,),
'input': value,
}
raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error])
def __getstate__(self) -> dict[Any, Any]:
private = self.__pydantic_private__
if private:
private = {k: v for k, v in private.items() if v is not PydanticUndefined}
return {
'__dict__': self.__dict__,
'__pydantic_extra__': self.__pydantic_extra__,
'__pydantic_fields_set__': self.__pydantic_fields_set__,
'__pydantic_private__': private,
}
def __setstate__(self, state: dict[Any, Any]) -> None:
_object_setattr(self, '__pydantic_fields_set__', state.get('__pydantic_fields_set__', {}))
_object_setattr(self, '__pydantic_extra__', state.get('__pydantic_extra__', {}))
_object_setattr(self, '__pydantic_private__', state.get('__pydantic_private__', {}))
_object_setattr(self, '__dict__', state.get('__dict__', {}))
if not TYPE_CHECKING:
def __eq__(self, other: Any) -> bool:
if isinstance(other, BaseModel):
# When comparing instances of generic types for equality, as long as all field values are equal,
# only require their generic origin types to be equal, rather than exact type equality.
# This prevents headaches like MyGeneric(x=1) != MyGeneric[Any](x=1).
self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__
other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__
# Perform common checks first
if not (
self_type == other_type
and getattr(self, '__pydantic_private__', None) == getattr(other, '__pydantic_private__', None)
and self.__pydantic_extra__ == other.__pydantic_extra__
):
return False
# We only want to compare pydantic fields but ignoring fields is costly.
# We'll perform a fast check first, and fallback only when needed
# See GH-7444 and GH-7825 for rationale and a performance benchmark
# First, do the fast (and sometimes faulty) __dict__ comparison
if self.__dict__ == other.__dict__:
# If the check above passes, then pydantic fields are equal, we can return early
return True
# We don't want to trigger unnecessary costly filtering of __dict__ on all unequal objects, so we return
# early if there are no keys to ignore (we would just return False later on anyway)
model_fields = type(self).model_fields.keys()
if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields:
return False
# If we reach here, there are non-pydantic-fields keys, mapped to unequal values, that we need to ignore
# Resort to costly filtering of the __dict__ objects
# We use operator.itemgetter because it is much faster than dict comprehensions
# NOTE: Contrary to standard python class and instances, when the Model class has a default value for an
# attribute and the model instance doesn't have a corresponding attribute, accessing the missing attribute
# raises an error in BaseModel.__getattr__ instead of returning the class attribute
# So we can use operator.itemgetter() instead of operator.attrgetter()
getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL
try:
return getter(self.__dict__) == getter(other.__dict__)
except KeyError:
# In rare cases (such as when using the deprecated BaseModel.copy() method),
# the __dict__ may not contain all model fields, which is how we can get here.
# getter(self.__dict__) is much faster than any 'safe' method that accounts
# for missing keys, and wrapping it in a `try` doesn't slow things down much
# in the common case.
self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__)
other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__)
return getter(self_fields_proxy) == getter(other_fields_proxy)
# other instance is not a BaseModel
else:
return NotImplemented # delegate to the other item in the comparison
if TYPE_CHECKING:
# We put `__init_subclass__` in a TYPE_CHECKING block because, even though we want the type-checking benefits
# described in the signature of `__init_subclass__` below, we don't want to modify the default behavior of
# subclass initialization.
def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]):
"""This signature is included purely to help type-checkers check arguments to class declaration, which
provides a way to conveniently set model_config key/value pairs.
```py
from pydantic import BaseModel
class MyModel(BaseModel, extra='allow'):
...
```
However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any
of the config arguments, and will only receive any keyword arguments passed during class initialization
that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.)
Args:
**kwargs: Keyword arguments passed to the class definition, which set model_config
Note:
You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called
*after* the class is fully initialized.
"""
def __iter__(self) -> TupleGenerator:
"""So `dict(model)` works."""
yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')]
extra = self.__pydantic_extra__
if extra:
yield from extra.items()
def __repr__(self) -> str:
return f'{self.__repr_name__()}({self.__repr_str__(", ")})'
def __repr_args__(self) -> _repr.ReprArgs:
for k, v in self.__dict__.items():
field = self.model_fields.get(k)
if field and field.repr:
yield k, v
# `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
# This can happen if a `ValidationError` is raised during initialization and the instance's
# repr is generated as part of the exception handling. Therefore, we use `getattr` here
# with a fallback, even though the type hints indicate the attribute will always be present.
try:
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
except AttributeError:
pydantic_extra = None
if pydantic_extra is not None:
yield from ((k, v) for k, v in pydantic_extra.items())
yield from ((k, getattr(self, k)) for k, v in self.model_computed_fields.items() if v.repr)
# take logic from `_repr.Representation` without the side effects of inheritance, see #5740
__repr_name__ = _repr.Representation.__repr_name__
__repr_str__ = _repr.Representation.__repr_str__
__pretty__ = _repr.Representation.__pretty__
__rich_repr__ = _repr.Representation.__rich_repr__
def __str__(self) -> str:
return self.__repr_str__(' ')
# ##### Deprecated methods from v1 #####
@property
@typing_extensions.deprecated(
'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None
)
def __fields__(self) -> dict[str, FieldInfo]:
warnings.warn(
'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=PydanticDeprecatedSince20
)
return self.model_fields
@property
@typing_extensions.deprecated(
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
category=None,
)
def __fields_set__(self) -> set[str]:
warnings.warn(
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
category=PydanticDeprecatedSince20,
)
return self.__pydantic_fields_set__
@typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None)
def dict( # noqa: D102
self,
*,
include: IncEx = None,
exclude: IncEx = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Dict[str, Any]: # noqa UP006
warnings.warn('The `dict` method is deprecated; use `model_dump` instead.', category=PydanticDeprecatedSince20)
return self.model_dump(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
@typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None)
def json( # noqa: D102
self,
*,
include: IncEx = None,
exclude: IncEx = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Callable[[Any], Any] | None = PydanticUndefined, # type: ignore[assignment]
models_as_dict: bool = PydanticUndefined, # type: ignore[assignment]
**dumps_kwargs: Any,
) -> str:
warnings.warn(
'The `json` method is deprecated; use `model_dump_json` instead.', category=PydanticDeprecatedSince20
)
if encoder is not PydanticUndefined:
raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.')
if models_as_dict is not PydanticUndefined:
raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.')
if dumps_kwargs:
raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.')
return self.model_dump_json(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
@classmethod
@typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None)
def parse_obj(cls, obj: Any) -> Self: # noqa: D102
warnings.warn(
'The `parse_obj` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20
)
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated(
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
'otherwise load the data then use `model_validate` instead.',
category=None,
)
def parse_raw( # noqa: D102
cls,
b: str | bytes,
*,
content_type: str | None = None,
encoding: str = 'utf8',
proto: DeprecatedParseProtocol | None = None,
allow_pickle: bool = False,
) -> Self: # pragma: no cover
warnings.warn(
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
'otherwise load the data then use `model_validate` instead.',
category=PydanticDeprecatedSince20,
)
from .deprecated import parse
try:
obj = parse.load_str_bytes(
b,
proto=proto,
content_type=content_type,
encoding=encoding,
allow_pickle=allow_pickle,
)
except (ValueError, TypeError) as exc:
import json
# try to match V1
if isinstance(exc, UnicodeDecodeError):
type_str = 'value_error.unicodedecode'
elif isinstance(exc, json.JSONDecodeError):
type_str = 'value_error.jsondecode'
elif isinstance(exc, ValueError):
type_str = 'value_error'
else:
type_str = 'type_error'
# ctx is missing here, but since we've added `input` to the error, we're not pretending it's the same
error: pydantic_core.InitErrorDetails = {
# The type: ignore on the next line is to ignore the requirement of LiteralString
'type': pydantic_core.PydanticCustomError(type_str, str(exc)), # type: ignore
'loc': ('__root__',),
'input': b,
}
raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error])
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated(
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
'use `model_validate_json`, otherwise `model_validate` instead.',
category=None,
)
def parse_file( # noqa: D102
cls,
path: str | Path,
*,
content_type: str | None = None,
encoding: str = 'utf8',
proto: DeprecatedParseProtocol | None = None,
allow_pickle: bool = False,
) -> Self:
warnings.warn(
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
'use `model_validate_json`, otherwise `model_validate` instead.',
category=PydanticDeprecatedSince20,
)
from .deprecated import parse
obj = parse.load_file(
path,
proto=proto,
content_type=content_type,
encoding=encoding,
allow_pickle=allow_pickle,
)
return cls.parse_obj(obj)
@classmethod
@typing_extensions.deprecated(
'The `from_orm` method is deprecated; set '
"`model_config['from_attributes']=True` and use `model_validate` instead.",
category=None,
)
def from_orm(cls, obj: Any) -> Self: # noqa: D102
warnings.warn(
'The `from_orm` method is deprecated; set '
"`model_config['from_attributes']=True` and use `model_validate` instead.",
category=PydanticDeprecatedSince20,
)
if not cls.model_config.get('from_attributes', None):
raise PydanticUserError(
'You must set the config attribute `from_attributes=True` to use from_orm', code=None
)
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None)
def construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: D102
warnings.warn(
'The `construct` method is deprecated; use `model_construct` instead.', category=PydanticDeprecatedSince20
)
return cls.model_construct(_fields_set=_fields_set, **values)
@typing_extensions.deprecated(
'The `copy` method is deprecated; use `model_copy` instead. '
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
category=None,
)
def copy(
self,
*,
include: AbstractSetIntStr | MappingIntStrAny | None = None,
exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
update: Dict[str, Any] | None = None, # noqa UP006
deep: bool = False,
) -> Self: # pragma: no cover
"""Returns a copy of the model.
!!! warning "Deprecated"
This method is now deprecated; use `model_copy` instead.
If you need `include` or `exclude`, use:
```py
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
```
Args:
include: Optional set or mapping specifying which fields to include in the copied model.
exclude: Optional set or mapping specifying which fields to exclude in the copied model.
update: Optional dictionary of field-value pairs to override field values in the copied model.
deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns:
A copy of the model with included, excluded and updated fields as specified.
"""
warnings.warn(
'The `copy` method is deprecated; use `model_copy` instead. '
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
category=PydanticDeprecatedSince20,
)
from .deprecated import copy_internals
values = dict(
copy_internals._iter(
self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False
),
**(update or {}),
)
if self.__pydantic_private__ is None:
private = None
else:
private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}
if self.__pydantic_extra__ is None:
extra: dict[str, Any] | None = None
else:
extra = self.__pydantic_extra__.copy()
for k in list(self.__pydantic_extra__):
if k not in values: # k was in the exclude
extra.pop(k)
for k in list(values):
if k in self.__pydantic_extra__: # k must have come from extra
extra[k] = values.pop(k)
# new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg
if update:
fields_set = self.__pydantic_fields_set__ | update.keys()
else:
fields_set = set(self.__pydantic_fields_set__)
# removing excluded fields from `__pydantic_fields_set__`
if exclude:
fields_set -= set(exclude)
return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep)
@classmethod
@typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None)
def schema( # noqa: D102
cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE
) -> Dict[str, Any]: # noqa UP006
warnings.warn(
'The `schema` method is deprecated; use `model_json_schema` instead.', category=PydanticDeprecatedSince20
)
return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template)
@classmethod
@typing_extensions.deprecated(
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
category=None,
)
def schema_json( # noqa: D102
cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any
) -> str: # pragma: no cover
warnings.warn(
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
category=PydanticDeprecatedSince20,
)
import json
from .deprecated.json import pydantic_encoder
return json.dumps(
cls.model_json_schema(by_alias=by_alias, ref_template=ref_template),
default=pydantic_encoder,
**dumps_kwargs,
)
@classmethod
@typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None)
def validate(cls, value: Any) -> Self: # noqa: D102
warnings.warn(
'The `validate` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20
)
return cls.model_validate(value)
@classmethod
@typing_extensions.deprecated(
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
category=None,
)
def update_forward_refs(cls, **localns: Any) -> None: # noqa: D102
warnings.warn(
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
category=PydanticDeprecatedSince20,
)
if localns: # pragma: no cover
raise TypeError('`localns` arguments are not longer accepted.')
cls.model_rebuild(force=True)
@typing_extensions.deprecated(
'The private method `_iter` will be removed and should no longer be used.', category=None
)
def _iter(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_iter` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
)
from .deprecated import copy_internals
return copy_internals._iter(self, *args, **kwargs)
@typing_extensions.deprecated(
'The private method `_copy_and_set_values` will be removed and should no longer be used.',
category=None,
)
def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_copy_and_set_values` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
)
from .deprecated import copy_internals
return copy_internals._copy_and_set_values(self, *args, **kwargs)
@classmethod
@typing_extensions.deprecated(
'The private method `_get_value` will be removed and should no longer be used.',
category=None,
)
def _get_value(cls, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_get_value` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
)
from .deprecated import copy_internals
return copy_internals._get_value(cls, *args, **kwargs)
@typing_extensions.deprecated(
'The private method `_calculate_keys` will be removed and should no longer be used.',
category=None,
)
def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_calculate_keys` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
)
from .deprecated import copy_internals
return copy_internals._calculate_keys(self, *args, **kwargs)
@overload
def create_model(
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: None = None,
__module__: str = __name__,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
**field_definitions: Any,
) -> type[BaseModel]: ...
@overload
def create_model(
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: type[ModelT] | tuple[type[ModelT], ...],
__module__: str = __name__,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
**field_definitions: Any,
) -> type[ModelT]: ...
def create_model( # noqa: C901
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: type[ModelT] | tuple[type[ModelT], ...] | None = None,
__module__: str | None = None,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
__slots__: tuple[str, ...] | None = None,
**field_definitions: Any,
) -> type[ModelT]:
"""Usage docs: https://docs.pydantic.dev/2.8/concepts/models/#dynamic-model-creation
Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a
subclass of [`BaseModel`][pydantic.BaseModel].
Args:
model_name: The name of the newly created model.
__config__: The configuration of the new model.
__doc__: The docstring of the new model.
__base__: The base class or classes for the new model.
__module__: The name of the module that the model belongs to;
if `None`, the value is taken from `sys._getframe(1)`
__validators__: A dictionary of methods that validate fields. The keys are the names of the validation methods to
be added to the model, and the values are the validation methods themselves. You can read more about functional
validators [here](https://docs.pydantic.dev/2.8/concepts/validators/#field-validators).
__cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`.
__slots__: Deprecated. Should not be passed to `create_model`.
**field_definitions: Attributes of the new model. They should be passed in the format:
`<name>=(<type>, <default value>)`, `<name>=(<type>, <FieldInfo>)`, or `typing.Annotated[<type>, <FieldInfo>]`.
Any additional metadata in `typing.Annotated[<type>, <FieldInfo>, ...]` will be ignored.
Returns:
The new [model][pydantic.BaseModel].
Raises:
PydanticUserError: If `__base__` and `__config__` are both passed.
"""
if __slots__ is not None:
# __slots__ will be ignored from here on
warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning)
if __base__ is not None:
if __config__ is not None:
raise PydanticUserError(
'to avoid confusion `__config__` and `__base__` cannot be used together',
code='create-model-config-base',
)
if not isinstance(__base__, tuple):
__base__ = (__base__,)
else:
__base__ = (cast('type[ModelT]', BaseModel),)
__cls_kwargs__ = __cls_kwargs__ or {}
fields = {}
annotations = {}
for f_name, f_def in field_definitions.items():
if not _fields.is_valid_field_name(f_name):
warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning)
if isinstance(f_def, tuple):
f_def = cast('tuple[str, Any]', f_def)
try:
f_annotation, f_value = f_def
except ValueError as e:
raise PydanticUserError(
'Field definitions should be a `(<type>, <default>)`.',
code='create-model-field-definitions',
) from e
elif _typing_extra.is_annotated(f_def):
(f_annotation, f_value, *_) = typing_extensions.get_args(
f_def
) # first two input are expected from Annotated, refer to https://docs.python.org/3/library/typing.html#typing.Annotated
from .fields import FieldInfo
if not isinstance(f_value, FieldInfo):
raise PydanticUserError(
'Field definitions should be a Annotated[<type>, <FieldInfo>]',
code='create-model-field-definitions',
)
else:
f_annotation, f_value = None, f_def
if f_annotation:
annotations[f_name] = f_annotation
fields[f_name] = f_value
if __module__ is None:
f = sys._getframe(1)
__module__ = f.f_globals['__name__']
namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__}
if __doc__:
namespace.update({'__doc__': __doc__})
if __validators__:
namespace.update(__validators__)
namespace.update(fields)
if __config__:
namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict
resolved_bases = types.resolve_bases(__base__)
meta, ns, kwds = types.prepare_class(model_name, resolved_bases, kwds=__cls_kwargs__)
if resolved_bases is not __base__:
ns['__orig_bases__'] = __base__
namespace.update(ns)
return meta(
model_name,
resolved_bases,
namespace,
__pydantic_reset_parent_namespace__=False,
_create_model_module=__module__,
**kwds,
)
__getattr__ = getattr_migration(__name__)
|