File size: 50,649 Bytes
4ae0b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
import copy
import re
from collections import Counter as CollectionCounter, defaultdict, deque
from collections.abc import Callable, Hashable as CollectionsHashable, Iterable as CollectionsIterable
from typing import (
    TYPE_CHECKING,
    Any,
    Counter,
    DefaultDict,
    Deque,
    Dict,
    ForwardRef,
    FrozenSet,
    Generator,
    Iterable,
    Iterator,
    List,
    Mapping,
    Optional,
    Pattern,
    Sequence,
    Set,
    Tuple,
    Type,
    TypeVar,
    Union,
)

from typing_extensions import Annotated, Final

from pydantic.v1 import errors as errors_
from pydantic.v1.class_validators import Validator, make_generic_validator, prep_validators
from pydantic.v1.error_wrappers import ErrorWrapper
from pydantic.v1.errors import ConfigError, InvalidDiscriminator, MissingDiscriminator, NoneIsNotAllowedError
from pydantic.v1.types import Json, JsonWrapper
from pydantic.v1.typing import (
    NoArgAnyCallable,
    convert_generics,
    display_as_type,
    get_args,
    get_origin,
    is_finalvar,
    is_literal_type,
    is_new_type,
    is_none_type,
    is_typeddict,
    is_typeddict_special,
    is_union,
    new_type_supertype,
)
from pydantic.v1.utils import (
    PyObjectStr,
    Representation,
    ValueItems,
    get_discriminator_alias_and_values,
    get_unique_discriminator_alias,
    lenient_isinstance,
    lenient_issubclass,
    sequence_like,
    smart_deepcopy,
)
from pydantic.v1.validators import constant_validator, dict_validator, find_validators, validate_json

Required: Any = Ellipsis

T = TypeVar('T')


class UndefinedType:
    def __repr__(self) -> str:
        return 'PydanticUndefined'

    def __copy__(self: T) -> T:
        return self

    def __reduce__(self) -> str:
        return 'Undefined'

    def __deepcopy__(self: T, _: Any) -> T:
        return self


Undefined = UndefinedType()

if TYPE_CHECKING:
    from pydantic.v1.class_validators import ValidatorsList
    from pydantic.v1.config import BaseConfig
    from pydantic.v1.error_wrappers import ErrorList
    from pydantic.v1.types import ModelOrDc
    from pydantic.v1.typing import AbstractSetIntStr, MappingIntStrAny, ReprArgs

    ValidateReturn = Tuple[Optional[Any], Optional[ErrorList]]
    LocStr = Union[Tuple[Union[int, str], ...], str]
    BoolUndefined = Union[bool, UndefinedType]


class FieldInfo(Representation):
    """
    Captures extra information about a field.
    """

    __slots__ = (
        'default',
        'default_factory',
        'alias',
        'alias_priority',
        'title',
        'description',
        'exclude',
        'include',
        'const',
        'gt',
        'ge',
        'lt',
        'le',
        'multiple_of',
        'allow_inf_nan',
        'max_digits',
        'decimal_places',
        'min_items',
        'max_items',
        'unique_items',
        'min_length',
        'max_length',
        'allow_mutation',
        'repr',
        'regex',
        'discriminator',
        'extra',
    )

    # field constraints with the default value, it's also used in update_from_config below
    __field_constraints__ = {
        'min_length': None,
        'max_length': None,
        'regex': None,
        'gt': None,
        'lt': None,
        'ge': None,
        'le': None,
        'multiple_of': None,
        'allow_inf_nan': None,
        'max_digits': None,
        'decimal_places': None,
        'min_items': None,
        'max_items': None,
        'unique_items': None,
        'allow_mutation': True,
    }

    def __init__(self, default: Any = Undefined, **kwargs: Any) -> None:
        self.default = default
        self.default_factory = kwargs.pop('default_factory', None)
        self.alias = kwargs.pop('alias', None)
        self.alias_priority = kwargs.pop('alias_priority', 2 if self.alias is not None else None)
        self.title = kwargs.pop('title', None)
        self.description = kwargs.pop('description', None)
        self.exclude = kwargs.pop('exclude', None)
        self.include = kwargs.pop('include', None)
        self.const = kwargs.pop('const', None)
        self.gt = kwargs.pop('gt', None)
        self.ge = kwargs.pop('ge', None)
        self.lt = kwargs.pop('lt', None)
        self.le = kwargs.pop('le', None)
        self.multiple_of = kwargs.pop('multiple_of', None)
        self.allow_inf_nan = kwargs.pop('allow_inf_nan', None)
        self.max_digits = kwargs.pop('max_digits', None)
        self.decimal_places = kwargs.pop('decimal_places', None)
        self.min_items = kwargs.pop('min_items', None)
        self.max_items = kwargs.pop('max_items', None)
        self.unique_items = kwargs.pop('unique_items', None)
        self.min_length = kwargs.pop('min_length', None)
        self.max_length = kwargs.pop('max_length', None)
        self.allow_mutation = kwargs.pop('allow_mutation', True)
        self.regex = kwargs.pop('regex', None)
        self.discriminator = kwargs.pop('discriminator', None)
        self.repr = kwargs.pop('repr', True)
        self.extra = kwargs

    def __repr_args__(self) -> 'ReprArgs':
        field_defaults_to_hide: Dict[str, Any] = {
            'repr': True,
            **self.__field_constraints__,
        }

        attrs = ((s, getattr(self, s)) for s in self.__slots__)
        return [(a, v) for a, v in attrs if v != field_defaults_to_hide.get(a, None)]

    def get_constraints(self) -> Set[str]:
        """
        Gets the constraints set on the field by comparing the constraint value with its default value

        :return: the constraints set on field_info
        """
        return {attr for attr, default in self.__field_constraints__.items() if getattr(self, attr) != default}

    def update_from_config(self, from_config: Dict[str, Any]) -> None:
        """
        Update this FieldInfo based on a dict from get_field_info, only fields which have not been set are dated.
        """
        for attr_name, value in from_config.items():
            try:
                current_value = getattr(self, attr_name)
            except AttributeError:
                # attr_name is not an attribute of FieldInfo, it should therefore be added to extra
                # (except if extra already has this value!)
                self.extra.setdefault(attr_name, value)
            else:
                if current_value is self.__field_constraints__.get(attr_name, None):
                    setattr(self, attr_name, value)
                elif attr_name == 'exclude':
                    self.exclude = ValueItems.merge(value, current_value)
                elif attr_name == 'include':
                    self.include = ValueItems.merge(value, current_value, intersect=True)

    def _validate(self) -> None:
        if self.default is not Undefined and self.default_factory is not None:
            raise ValueError('cannot specify both default and default_factory')


def Field(
    default: Any = Undefined,
    *,
    default_factory: Optional[NoArgAnyCallable] = None,
    alias: Optional[str] = None,
    title: Optional[str] = None,
    description: Optional[str] = None,
    exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None,
    include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None,
    const: Optional[bool] = None,
    gt: Optional[float] = None,
    ge: Optional[float] = None,
    lt: Optional[float] = None,
    le: Optional[float] = None,
    multiple_of: Optional[float] = None,
    allow_inf_nan: Optional[bool] = None,
    max_digits: Optional[int] = None,
    decimal_places: Optional[int] = None,
    min_items: Optional[int] = None,
    max_items: Optional[int] = None,
    unique_items: Optional[bool] = None,
    min_length: Optional[int] = None,
    max_length: Optional[int] = None,
    allow_mutation: bool = True,
    regex: Optional[str] = None,
    discriminator: Optional[str] = None,
    repr: bool = True,
    **extra: Any,
) -> Any:
    """
    Used to provide extra information about a field, either for the model schema or complex validation. Some arguments
    apply only to number fields (``int``, ``float``, ``Decimal``) and some apply only to ``str``.

    :param default: since this is replacing the field’s default, its first argument is used
      to set the default, use ellipsis (``...``) to indicate the field is required
    :param default_factory: callable that will be called when a default value is needed for this field
      If both `default` and `default_factory` are set, an error is raised.
    :param alias: the public name of the field
    :param title: can be any string, used in the schema
    :param description: can be any string, used in the schema
    :param exclude: exclude this field while dumping.
      Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method.
    :param include: include this field while dumping.
      Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method.
    :param const: this field is required and *must* take it's default value
    :param gt: only applies to numbers, requires the field to be "greater than". The schema
      will have an ``exclusiveMinimum`` validation keyword
    :param ge: only applies to numbers, requires the field to be "greater than or equal to". The
      schema will have a ``minimum`` validation keyword
    :param lt: only applies to numbers, requires the field to be "less than". The schema
      will have an ``exclusiveMaximum`` validation keyword
    :param le: only applies to numbers, requires the field to be "less than or equal to". The
      schema will have a ``maximum`` validation keyword
    :param multiple_of: only applies to numbers, requires the field to be "a multiple of". The
      schema will have a ``multipleOf`` validation keyword
    :param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf),
        which is a valid Python float. Default True, set to False for compatibility with JSON.
    :param max_digits: only applies to Decimals, requires the field to have a maximum number
      of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes.
    :param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places
      allowed. It does not include trailing decimal zeroes.
    :param min_items: only applies to lists, requires the field to have a minimum number of
      elements. The schema will have a ``minItems`` validation keyword
    :param max_items: only applies to lists, requires the field to have a maximum number of
      elements. The schema will have a ``maxItems`` validation keyword
    :param unique_items: only applies to lists, requires the field not to have duplicated
      elements. The schema will have a ``uniqueItems`` validation keyword
    :param min_length: only applies to strings, requires the field to have a minimum length. The
      schema will have a ``minLength`` validation keyword
    :param max_length: only applies to strings, requires the field to have a maximum length. The
      schema will have a ``maxLength`` validation keyword
    :param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is
      assigned on an instance.  The BaseModel Config must set validate_assignment to True
    :param regex: only applies to strings, requires the field match against a regular expression
      pattern string. The schema will have a ``pattern`` validation keyword
    :param discriminator: only useful with a (discriminated a.k.a. tagged) `Union` of sub models with a common field.
      The `discriminator` is the name of this common field to shorten validation and improve generated schema
    :param repr: show this field in the representation
    :param **extra: any additional keyword arguments will be added as is to the schema
    """
    field_info = FieldInfo(
        default,
        default_factory=default_factory,
        alias=alias,
        title=title,
        description=description,
        exclude=exclude,
        include=include,
        const=const,
        gt=gt,
        ge=ge,
        lt=lt,
        le=le,
        multiple_of=multiple_of,
        allow_inf_nan=allow_inf_nan,
        max_digits=max_digits,
        decimal_places=decimal_places,
        min_items=min_items,
        max_items=max_items,
        unique_items=unique_items,
        min_length=min_length,
        max_length=max_length,
        allow_mutation=allow_mutation,
        regex=regex,
        discriminator=discriminator,
        repr=repr,
        **extra,
    )
    field_info._validate()
    return field_info


# used to be an enum but changed to int's for small performance improvement as less access overhead
SHAPE_SINGLETON = 1
SHAPE_LIST = 2
SHAPE_SET = 3
SHAPE_MAPPING = 4
SHAPE_TUPLE = 5
SHAPE_TUPLE_ELLIPSIS = 6
SHAPE_SEQUENCE = 7
SHAPE_FROZENSET = 8
SHAPE_ITERABLE = 9
SHAPE_GENERIC = 10
SHAPE_DEQUE = 11
SHAPE_DICT = 12
SHAPE_DEFAULTDICT = 13
SHAPE_COUNTER = 14
SHAPE_NAME_LOOKUP = {
    SHAPE_LIST: 'List[{}]',
    SHAPE_SET: 'Set[{}]',
    SHAPE_TUPLE_ELLIPSIS: 'Tuple[{}, ...]',
    SHAPE_SEQUENCE: 'Sequence[{}]',
    SHAPE_FROZENSET: 'FrozenSet[{}]',
    SHAPE_ITERABLE: 'Iterable[{}]',
    SHAPE_DEQUE: 'Deque[{}]',
    SHAPE_DICT: 'Dict[{}]',
    SHAPE_DEFAULTDICT: 'DefaultDict[{}]',
    SHAPE_COUNTER: 'Counter[{}]',
}

MAPPING_LIKE_SHAPES: Set[int] = {SHAPE_DEFAULTDICT, SHAPE_DICT, SHAPE_MAPPING, SHAPE_COUNTER}


class ModelField(Representation):
    __slots__ = (
        'type_',
        'outer_type_',
        'annotation',
        'sub_fields',
        'sub_fields_mapping',
        'key_field',
        'validators',
        'pre_validators',
        'post_validators',
        'default',
        'default_factory',
        'required',
        'final',
        'model_config',
        'name',
        'alias',
        'has_alias',
        'field_info',
        'discriminator_key',
        'discriminator_alias',
        'validate_always',
        'allow_none',
        'shape',
        'class_validators',
        'parse_json',
    )

    def __init__(
        self,
        *,
        name: str,
        type_: Type[Any],
        class_validators: Optional[Dict[str, Validator]],
        model_config: Type['BaseConfig'],
        default: Any = None,
        default_factory: Optional[NoArgAnyCallable] = None,
        required: 'BoolUndefined' = Undefined,
        final: bool = False,
        alias: Optional[str] = None,
        field_info: Optional[FieldInfo] = None,
    ) -> None:
        self.name: str = name
        self.has_alias: bool = alias is not None
        self.alias: str = alias if alias is not None else name
        self.annotation = type_
        self.type_: Any = convert_generics(type_)
        self.outer_type_: Any = type_
        self.class_validators = class_validators or {}
        self.default: Any = default
        self.default_factory: Optional[NoArgAnyCallable] = default_factory
        self.required: 'BoolUndefined' = required
        self.final: bool = final
        self.model_config = model_config
        self.field_info: FieldInfo = field_info or FieldInfo(default)
        self.discriminator_key: Optional[str] = self.field_info.discriminator
        self.discriminator_alias: Optional[str] = self.discriminator_key

        self.allow_none: bool = False
        self.validate_always: bool = False
        self.sub_fields: Optional[List[ModelField]] = None
        self.sub_fields_mapping: Optional[Dict[str, 'ModelField']] = None  # used for discriminated union
        self.key_field: Optional[ModelField] = None
        self.validators: 'ValidatorsList' = []
        self.pre_validators: Optional['ValidatorsList'] = None
        self.post_validators: Optional['ValidatorsList'] = None
        self.parse_json: bool = False
        self.shape: int = SHAPE_SINGLETON
        self.model_config.prepare_field(self)
        self.prepare()

    def get_default(self) -> Any:
        return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()

    @staticmethod
    def _get_field_info(
        field_name: str, annotation: Any, value: Any, config: Type['BaseConfig']
    ) -> Tuple[FieldInfo, Any]:
        """
        Get a FieldInfo from a root typing.Annotated annotation, value, or config default.

        The FieldInfo may be set in typing.Annotated or the value, but not both. If neither contain
        a FieldInfo, a new one will be created using the config.

        :param field_name: name of the field for use in error messages
        :param annotation: a type hint such as `str` or `Annotated[str, Field(..., min_length=5)]`
        :param value: the field's assigned value
        :param config: the model's config object
        :return: the FieldInfo contained in the `annotation`, the value, or a new one from the config.
        """
        field_info_from_config = config.get_field_info(field_name)

        field_info = None
        if get_origin(annotation) is Annotated:
            field_infos = [arg for arg in get_args(annotation)[1:] if isinstance(arg, FieldInfo)]
            if len(field_infos) > 1:
                raise ValueError(f'cannot specify multiple `Annotated` `Field`s for {field_name!r}')
            field_info = next(iter(field_infos), None)
            if field_info is not None:
                field_info = copy.copy(field_info)
                field_info.update_from_config(field_info_from_config)
                if field_info.default not in (Undefined, Required):
                    raise ValueError(f'`Field` default cannot be set in `Annotated` for {field_name!r}')
                if value is not Undefined and value is not Required:
                    # check also `Required` because of `validate_arguments` that sets `...` as default value
                    field_info.default = value

        if isinstance(value, FieldInfo):
            if field_info is not None:
                raise ValueError(f'cannot specify `Annotated` and value `Field`s together for {field_name!r}')
            field_info = value
            field_info.update_from_config(field_info_from_config)
        elif field_info is None:
            field_info = FieldInfo(value, **field_info_from_config)
        value = None if field_info.default_factory is not None else field_info.default
        field_info._validate()
        return field_info, value

    @classmethod
    def infer(
        cls,
        *,
        name: str,
        value: Any,
        annotation: Any,
        class_validators: Optional[Dict[str, Validator]],
        config: Type['BaseConfig'],
    ) -> 'ModelField':
        from pydantic.v1.schema import get_annotation_from_field_info

        field_info, value = cls._get_field_info(name, annotation, value, config)
        required: 'BoolUndefined' = Undefined
        if value is Required:
            required = True
            value = None
        elif value is not Undefined:
            required = False
        annotation = get_annotation_from_field_info(annotation, field_info, name, config.validate_assignment)

        return cls(
            name=name,
            type_=annotation,
            alias=field_info.alias,
            class_validators=class_validators,
            default=value,
            default_factory=field_info.default_factory,
            required=required,
            model_config=config,
            field_info=field_info,
        )

    def set_config(self, config: Type['BaseConfig']) -> None:
        self.model_config = config
        info_from_config = config.get_field_info(self.name)
        config.prepare_field(self)
        new_alias = info_from_config.get('alias')
        new_alias_priority = info_from_config.get('alias_priority') or 0
        if new_alias and new_alias_priority >= (self.field_info.alias_priority or 0):
            self.field_info.alias = new_alias
            self.field_info.alias_priority = new_alias_priority
            self.alias = new_alias
        new_exclude = info_from_config.get('exclude')
        if new_exclude is not None:
            self.field_info.exclude = ValueItems.merge(self.field_info.exclude, new_exclude)
        new_include = info_from_config.get('include')
        if new_include is not None:
            self.field_info.include = ValueItems.merge(self.field_info.include, new_include, intersect=True)

    @property
    def alt_alias(self) -> bool:
        return self.name != self.alias

    def prepare(self) -> None:
        """
        Prepare the field but inspecting self.default, self.type_ etc.

        Note: this method is **not** idempotent (because _type_analysis is not idempotent),
        e.g. calling it it multiple times may modify the field and configure it incorrectly.
        """
        self._set_default_and_type()
        if self.type_.__class__ is ForwardRef or self.type_.__class__ is DeferredType:
            # self.type_ is currently a ForwardRef and there's nothing we can do now,
            # user will need to call model.update_forward_refs()
            return

        self._type_analysis()
        if self.required is Undefined:
            self.required = True
        if self.default is Undefined and self.default_factory is None:
            self.default = None
        self.populate_validators()

    def _set_default_and_type(self) -> None:
        """
        Set the default value, infer the type if needed and check if `None` value is valid.
        """
        if self.default_factory is not None:
            if self.type_ is Undefined:
                raise errors_.ConfigError(
                    f'you need to set the type of field {self.name!r} when using `default_factory`'
                )
            return

        default_value = self.get_default()

        if default_value is not None and self.type_ is Undefined:
            self.type_ = default_value.__class__
            self.outer_type_ = self.type_
            self.annotation = self.type_

        if self.type_ is Undefined:
            raise errors_.ConfigError(f'unable to infer type for attribute "{self.name}"')

        if self.required is False and default_value is None:
            self.allow_none = True

    def _type_analysis(self) -> None:  # noqa: C901 (ignore complexity)
        # typing interface is horrible, we have to do some ugly checks
        if lenient_issubclass(self.type_, JsonWrapper):
            self.type_ = self.type_.inner_type
            self.parse_json = True
        elif lenient_issubclass(self.type_, Json):
            self.type_ = Any
            self.parse_json = True
        elif isinstance(self.type_, TypeVar):
            if self.type_.__bound__:
                self.type_ = self.type_.__bound__
            elif self.type_.__constraints__:
                self.type_ = Union[self.type_.__constraints__]
            else:
                self.type_ = Any
        elif is_new_type(self.type_):
            self.type_ = new_type_supertype(self.type_)

        if self.type_ is Any or self.type_ is object:
            if self.required is Undefined:
                self.required = False
            self.allow_none = True
            return
        elif self.type_ is Pattern or self.type_ is re.Pattern:
            # python 3.7 only, Pattern is a typing object but without sub fields
            return
        elif is_literal_type(self.type_):
            return
        elif is_typeddict(self.type_):
            return

        if is_finalvar(self.type_):
            self.final = True

            if self.type_ is Final:
                self.type_ = Any
            else:
                self.type_ = get_args(self.type_)[0]

            self._type_analysis()
            return

        origin = get_origin(self.type_)

        if origin is Annotated or is_typeddict_special(origin):
            self.type_ = get_args(self.type_)[0]
            self._type_analysis()
            return

        if self.discriminator_key is not None and not is_union(origin):
            raise TypeError('`discriminator` can only be used with `Union` type with more than one variant')

        # add extra check for `collections.abc.Hashable` for python 3.10+ where origin is not `None`
        if origin is None or origin is CollectionsHashable:
            # field is not "typing" object eg. Union, Dict, List etc.
            # allow None for virtual superclasses of NoneType, e.g. Hashable
            if isinstance(self.type_, type) and isinstance(None, self.type_):
                self.allow_none = True
            return
        elif origin is Callable:
            return
        elif is_union(origin):
            types_ = []
            for type_ in get_args(self.type_):
                if is_none_type(type_) or type_ is Any or type_ is object:
                    if self.required is Undefined:
                        self.required = False
                    self.allow_none = True
                if is_none_type(type_):
                    continue
                types_.append(type_)

            if len(types_) == 1:
                # Optional[]
                self.type_ = types_[0]
                # this is the one case where the "outer type" isn't just the original type
                self.outer_type_ = self.type_
                # re-run to correctly interpret the new self.type_
                self._type_analysis()
            else:
                self.sub_fields = [self._create_sub_type(t, f'{self.name}_{display_as_type(t)}') for t in types_]

                if self.discriminator_key is not None:
                    self.prepare_discriminated_union_sub_fields()
            return
        elif issubclass(origin, Tuple):  # type: ignore
            # origin == Tuple without item type
            args = get_args(self.type_)
            if not args:  # plain tuple
                self.type_ = Any
                self.shape = SHAPE_TUPLE_ELLIPSIS
            elif len(args) == 2 and args[1] is Ellipsis:  # e.g. Tuple[int, ...]
                self.type_ = args[0]
                self.shape = SHAPE_TUPLE_ELLIPSIS
                self.sub_fields = [self._create_sub_type(args[0], f'{self.name}_0')]
            elif args == ((),):  # Tuple[()] means empty tuple
                self.shape = SHAPE_TUPLE
                self.type_ = Any
                self.sub_fields = []
            else:
                self.shape = SHAPE_TUPLE
                self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(args)]
            return
        elif issubclass(origin, List):
            # Create self validators
            get_validators = getattr(self.type_, '__get_validators__', None)
            if get_validators:
                self.class_validators.update(
                    {f'list_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
                )

            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_LIST
        elif issubclass(origin, Set):
            # Create self validators
            get_validators = getattr(self.type_, '__get_validators__', None)
            if get_validators:
                self.class_validators.update(
                    {f'set_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
                )

            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_SET
        elif issubclass(origin, FrozenSet):
            # Create self validators
            get_validators = getattr(self.type_, '__get_validators__', None)
            if get_validators:
                self.class_validators.update(
                    {f'frozenset_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())}
                )

            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_FROZENSET
        elif issubclass(origin, Deque):
            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_DEQUE
        elif issubclass(origin, Sequence):
            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_SEQUENCE
        # priority to most common mapping: dict
        elif origin is dict or origin is Dict:
            self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
            self.type_ = get_args(self.type_)[1]
            self.shape = SHAPE_DICT
        elif issubclass(origin, DefaultDict):
            self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
            self.type_ = get_args(self.type_)[1]
            self.shape = SHAPE_DEFAULTDICT
        elif issubclass(origin, Counter):
            self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
            self.type_ = int
            self.shape = SHAPE_COUNTER
        elif issubclass(origin, Mapping):
            self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True)
            self.type_ = get_args(self.type_)[1]
            self.shape = SHAPE_MAPPING
        # Equality check as almost everything inherits form Iterable, including str
        # check for Iterable and CollectionsIterable, as it could receive one even when declared with the other
        elif origin in {Iterable, CollectionsIterable}:
            self.type_ = get_args(self.type_)[0]
            self.shape = SHAPE_ITERABLE
            self.sub_fields = [self._create_sub_type(self.type_, f'{self.name}_type')]
        elif issubclass(origin, Type):  # type: ignore
            return
        elif hasattr(origin, '__get_validators__') or self.model_config.arbitrary_types_allowed:
            # Is a Pydantic-compatible generic that handles itself
            # or we have arbitrary_types_allowed = True
            self.shape = SHAPE_GENERIC
            self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(get_args(self.type_))]
            self.type_ = origin
            return
        else:
            raise TypeError(f'Fields of type "{origin}" are not supported.')

        # type_ has been refined eg. as the type of a List and sub_fields needs to be populated
        self.sub_fields = [self._create_sub_type(self.type_, '_' + self.name)]

    def prepare_discriminated_union_sub_fields(self) -> None:
        """
        Prepare the mapping <discriminator key> -> <ModelField> and update `sub_fields`
        Note that this process can be aborted if a `ForwardRef` is encountered
        """
        assert self.discriminator_key is not None

        if self.type_.__class__ is DeferredType:
            return

        assert self.sub_fields is not None
        sub_fields_mapping: Dict[str, 'ModelField'] = {}
        all_aliases: Set[str] = set()

        for sub_field in self.sub_fields:
            t = sub_field.type_
            if t.__class__ is ForwardRef:
                # Stopping everything...will need to call `update_forward_refs`
                return

            alias, discriminator_values = get_discriminator_alias_and_values(t, self.discriminator_key)
            all_aliases.add(alias)
            for discriminator_value in discriminator_values:
                sub_fields_mapping[discriminator_value] = sub_field

        self.sub_fields_mapping = sub_fields_mapping
        self.discriminator_alias = get_unique_discriminator_alias(all_aliases, self.discriminator_key)

    def _create_sub_type(self, type_: Type[Any], name: str, *, for_keys: bool = False) -> 'ModelField':
        if for_keys:
            class_validators = None
        else:
            # validators for sub items should not have `each_item` as we want to check only the first sublevel
            class_validators = {
                k: Validator(
                    func=v.func,
                    pre=v.pre,
                    each_item=False,
                    always=v.always,
                    check_fields=v.check_fields,
                    skip_on_failure=v.skip_on_failure,
                )
                for k, v in self.class_validators.items()
                if v.each_item
            }

        field_info, _ = self._get_field_info(name, type_, None, self.model_config)

        return self.__class__(
            type_=type_,
            name=name,
            class_validators=class_validators,
            model_config=self.model_config,
            field_info=field_info,
        )

    def populate_validators(self) -> None:
        """
        Prepare self.pre_validators, self.validators, and self.post_validators based on self.type_'s  __get_validators__
        and class validators. This method should be idempotent, e.g. it should be safe to call multiple times
        without mis-configuring the field.
        """
        self.validate_always = getattr(self.type_, 'validate_always', False) or any(
            v.always for v in self.class_validators.values()
        )

        class_validators_ = self.class_validators.values()
        if not self.sub_fields or self.shape == SHAPE_GENERIC:
            get_validators = getattr(self.type_, '__get_validators__', None)
            v_funcs = (
                *[v.func for v in class_validators_ if v.each_item and v.pre],
                *(get_validators() if get_validators else list(find_validators(self.type_, self.model_config))),
                *[v.func for v in class_validators_ if v.each_item and not v.pre],
            )
            self.validators = prep_validators(v_funcs)

        self.pre_validators = []
        self.post_validators = []

        if self.field_info and self.field_info.const:
            self.post_validators.append(make_generic_validator(constant_validator))

        if class_validators_:
            self.pre_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and v.pre)
            self.post_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and not v.pre)

        if self.parse_json:
            self.pre_validators.append(make_generic_validator(validate_json))

        self.pre_validators = self.pre_validators or None
        self.post_validators = self.post_validators or None

    def validate(
        self, v: Any, values: Dict[str, Any], *, loc: 'LocStr', cls: Optional['ModelOrDc'] = None
    ) -> 'ValidateReturn':
        assert self.type_.__class__ is not DeferredType

        if self.type_.__class__ is ForwardRef:
            assert cls is not None
            raise ConfigError(
                f'field "{self.name}" not yet prepared so type is still a ForwardRef, '
                f'you might need to call {cls.__name__}.update_forward_refs().'
            )

        errors: Optional['ErrorList']
        if self.pre_validators:
            v, errors = self._apply_validators(v, values, loc, cls, self.pre_validators)
            if errors:
                return v, errors

        if v is None:
            if is_none_type(self.type_):
                # keep validating
                pass
            elif self.allow_none:
                if self.post_validators:
                    return self._apply_validators(v, values, loc, cls, self.post_validators)
                else:
                    return None, None
            else:
                return v, ErrorWrapper(NoneIsNotAllowedError(), loc)

        if self.shape == SHAPE_SINGLETON:
            v, errors = self._validate_singleton(v, values, loc, cls)
        elif self.shape in MAPPING_LIKE_SHAPES:
            v, errors = self._validate_mapping_like(v, values, loc, cls)
        elif self.shape == SHAPE_TUPLE:
            v, errors = self._validate_tuple(v, values, loc, cls)
        elif self.shape == SHAPE_ITERABLE:
            v, errors = self._validate_iterable(v, values, loc, cls)
        elif self.shape == SHAPE_GENERIC:
            v, errors = self._apply_validators(v, values, loc, cls, self.validators)
        else:
            #  sequence, list, set, generator, tuple with ellipsis, frozen set
            v, errors = self._validate_sequence_like(v, values, loc, cls)

        if not errors and self.post_validators:
            v, errors = self._apply_validators(v, values, loc, cls, self.post_validators)
        return v, errors

    def _validate_sequence_like(  # noqa: C901 (ignore complexity)
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        """
        Validate sequence-like containers: lists, tuples, sets and generators
        Note that large if-else blocks are necessary to enable Cython
        optimization, which is why we disable the complexity check above.
        """
        if not sequence_like(v):
            e: errors_.PydanticTypeError
            if self.shape == SHAPE_LIST:
                e = errors_.ListError()
            elif self.shape in (SHAPE_TUPLE, SHAPE_TUPLE_ELLIPSIS):
                e = errors_.TupleError()
            elif self.shape == SHAPE_SET:
                e = errors_.SetError()
            elif self.shape == SHAPE_FROZENSET:
                e = errors_.FrozenSetError()
            else:
                e = errors_.SequenceError()
            return v, ErrorWrapper(e, loc)

        loc = loc if isinstance(loc, tuple) else (loc,)
        result = []
        errors: List[ErrorList] = []
        for i, v_ in enumerate(v):
            v_loc = *loc, i
            r, ee = self._validate_singleton(v_, values, v_loc, cls)
            if ee:
                errors.append(ee)
            else:
                result.append(r)

        if errors:
            return v, errors

        converted: Union[List[Any], Set[Any], FrozenSet[Any], Tuple[Any, ...], Iterator[Any], Deque[Any]] = result

        if self.shape == SHAPE_SET:
            converted = set(result)
        elif self.shape == SHAPE_FROZENSET:
            converted = frozenset(result)
        elif self.shape == SHAPE_TUPLE_ELLIPSIS:
            converted = tuple(result)
        elif self.shape == SHAPE_DEQUE:
            converted = deque(result, maxlen=getattr(v, 'maxlen', None))
        elif self.shape == SHAPE_SEQUENCE:
            if isinstance(v, tuple):
                converted = tuple(result)
            elif isinstance(v, set):
                converted = set(result)
            elif isinstance(v, Generator):
                converted = iter(result)
            elif isinstance(v, deque):
                converted = deque(result, maxlen=getattr(v, 'maxlen', None))
        return converted, None

    def _validate_iterable(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        """
        Validate Iterables.

        This intentionally doesn't validate values to allow infinite generators.
        """

        try:
            iterable = iter(v)
        except TypeError:
            return v, ErrorWrapper(errors_.IterableError(), loc)
        return iterable, None

    def _validate_tuple(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        e: Optional[Exception] = None
        if not sequence_like(v):
            e = errors_.TupleError()
        else:
            actual_length, expected_length = len(v), len(self.sub_fields)  # type: ignore
            if actual_length != expected_length:
                e = errors_.TupleLengthError(actual_length=actual_length, expected_length=expected_length)

        if e:
            return v, ErrorWrapper(e, loc)

        loc = loc if isinstance(loc, tuple) else (loc,)
        result = []
        errors: List[ErrorList] = []
        for i, (v_, field) in enumerate(zip(v, self.sub_fields)):  # type: ignore
            v_loc = *loc, i
            r, ee = field.validate(v_, values, loc=v_loc, cls=cls)
            if ee:
                errors.append(ee)
            else:
                result.append(r)

        if errors:
            return v, errors
        else:
            return tuple(result), None

    def _validate_mapping_like(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        try:
            v_iter = dict_validator(v)
        except TypeError as exc:
            return v, ErrorWrapper(exc, loc)

        loc = loc if isinstance(loc, tuple) else (loc,)
        result, errors = {}, []
        for k, v_ in v_iter.items():
            v_loc = *loc, '__key__'
            key_result, key_errors = self.key_field.validate(k, values, loc=v_loc, cls=cls)  # type: ignore
            if key_errors:
                errors.append(key_errors)
                continue

            v_loc = *loc, k
            value_result, value_errors = self._validate_singleton(v_, values, v_loc, cls)
            if value_errors:
                errors.append(value_errors)
                continue

            result[key_result] = value_result
        if errors:
            return v, errors
        elif self.shape == SHAPE_DICT:
            return result, None
        elif self.shape == SHAPE_DEFAULTDICT:
            return defaultdict(self.type_, result), None
        elif self.shape == SHAPE_COUNTER:
            return CollectionCounter(result), None
        else:
            return self._get_mapping_value(v, result), None

    def _get_mapping_value(self, original: T, converted: Dict[Any, Any]) -> Union[T, Dict[Any, Any]]:
        """
        When type is `Mapping[KT, KV]` (or another unsupported mapping), we try to avoid
        coercing to `dict` unwillingly.
        """
        original_cls = original.__class__

        if original_cls == dict or original_cls == Dict:
            return converted
        elif original_cls in {defaultdict, DefaultDict}:
            return defaultdict(self.type_, converted)
        else:
            try:
                # Counter, OrderedDict, UserDict, ...
                return original_cls(converted)  # type: ignore
            except TypeError:
                raise RuntimeError(f'Could not convert dictionary to {original_cls.__name__!r}') from None

    def _validate_singleton(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        if self.sub_fields:
            if self.discriminator_key is not None:
                return self._validate_discriminated_union(v, values, loc, cls)

            errors = []

            if self.model_config.smart_union and is_union(get_origin(self.type_)):
                # 1st pass: check if the value is an exact instance of one of the Union types
                # (e.g. to avoid coercing a bool into an int)
                for field in self.sub_fields:
                    if v.__class__ is field.outer_type_:
                        return v, None

                # 2nd pass: check if the value is an instance of any subclass of the Union types
                for field in self.sub_fields:
                    # This whole logic will be improved later on to support more complex `isinstance` checks
                    # It will probably be done once a strict mode is added and be something like:
                    # ```
                    #     value, error = field.validate(v, values, strict=True)
                    #     if error is None:
                    #         return value, None
                    # ```
                    try:
                        if isinstance(v, field.outer_type_):
                            return v, None
                    except TypeError:
                        # compound type
                        if lenient_isinstance(v, get_origin(field.outer_type_)):
                            value, error = field.validate(v, values, loc=loc, cls=cls)
                            if not error:
                                return value, None

            # 1st pass by default or 3rd pass with `smart_union` enabled:
            # check if the value can be coerced into one of the Union types
            for field in self.sub_fields:
                value, error = field.validate(v, values, loc=loc, cls=cls)
                if error:
                    errors.append(error)
                else:
                    return value, None
            return v, errors
        else:
            return self._apply_validators(v, values, loc, cls, self.validators)

    def _validate_discriminated_union(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc']
    ) -> 'ValidateReturn':
        assert self.discriminator_key is not None
        assert self.discriminator_alias is not None

        try:
            try:
                discriminator_value = v[self.discriminator_alias]
            except KeyError:
                if self.model_config.allow_population_by_field_name:
                    discriminator_value = v[self.discriminator_key]
                else:
                    raise
        except KeyError:
            return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc)
        except TypeError:
            try:
                # BaseModel or dataclass
                discriminator_value = getattr(v, self.discriminator_key)
            except (AttributeError, TypeError):
                return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc)

        if self.sub_fields_mapping is None:
            assert cls is not None
            raise ConfigError(
                f'field "{self.name}" not yet prepared so type is still a ForwardRef, '
                f'you might need to call {cls.__name__}.update_forward_refs().'
            )

        try:
            sub_field = self.sub_fields_mapping[discriminator_value]
        except (KeyError, TypeError):
            # KeyError: `discriminator_value` is not in the dictionary.
            # TypeError: `discriminator_value` is unhashable.
            assert self.sub_fields_mapping is not None
            return v, ErrorWrapper(
                InvalidDiscriminator(
                    discriminator_key=self.discriminator_key,
                    discriminator_value=discriminator_value,
                    allowed_values=list(self.sub_fields_mapping),
                ),
                loc,
            )
        else:
            if not isinstance(loc, tuple):
                loc = (loc,)
            return sub_field.validate(v, values, loc=(*loc, display_as_type(sub_field.type_)), cls=cls)

    def _apply_validators(
        self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'], validators: 'ValidatorsList'
    ) -> 'ValidateReturn':
        for validator in validators:
            try:
                v = validator(cls, v, values, self, self.model_config)
            except (ValueError, TypeError, AssertionError) as exc:
                return v, ErrorWrapper(exc, loc)
        return v, None

    def is_complex(self) -> bool:
        """
        Whether the field is "complex" eg. env variables should be parsed as JSON.
        """
        from pydantic.v1.main import BaseModel

        return (
            self.shape != SHAPE_SINGLETON
            or hasattr(self.type_, '__pydantic_model__')
            or lenient_issubclass(self.type_, (BaseModel, list, set, frozenset, dict))
        )

    def _type_display(self) -> PyObjectStr:
        t = display_as_type(self.type_)

        if self.shape in MAPPING_LIKE_SHAPES:
            t = f'Mapping[{display_as_type(self.key_field.type_)}, {t}]'  # type: ignore
        elif self.shape == SHAPE_TUPLE:
            t = 'Tuple[{}]'.format(', '.join(display_as_type(f.type_) for f in self.sub_fields))  # type: ignore
        elif self.shape == SHAPE_GENERIC:
            assert self.sub_fields
            t = '{}[{}]'.format(
                display_as_type(self.type_), ', '.join(display_as_type(f.type_) for f in self.sub_fields)
            )
        elif self.shape != SHAPE_SINGLETON:
            t = SHAPE_NAME_LOOKUP[self.shape].format(t)

        if self.allow_none and (self.shape != SHAPE_SINGLETON or not self.sub_fields):
            t = f'Optional[{t}]'
        return PyObjectStr(t)

    def __repr_args__(self) -> 'ReprArgs':
        args = [('name', self.name), ('type', self._type_display()), ('required', self.required)]

        if not self.required:
            if self.default_factory is not None:
                args.append(('default_factory', f'<function {self.default_factory.__name__}>'))
            else:
                args.append(('default', self.default))

        if self.alt_alias:
            args.append(('alias', self.alias))
        return args


class ModelPrivateAttr(Representation):
    __slots__ = ('default', 'default_factory')

    def __init__(self, default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None) -> None:
        self.default = default
        self.default_factory = default_factory

    def get_default(self) -> Any:
        return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory()

    def __eq__(self, other: Any) -> bool:
        return isinstance(other, self.__class__) and (self.default, self.default_factory) == (
            other.default,
            other.default_factory,
        )


def PrivateAttr(
    default: Any = Undefined,
    *,
    default_factory: Optional[NoArgAnyCallable] = None,
) -> Any:
    """
    Indicates that attribute is only used internally and never mixed with regular fields.

    Types or values of private attrs are not checked by pydantic and it's up to you to keep them relevant.

    Private attrs are stored in model __slots__.

    :param default: the attribute’s default value
    :param default_factory: callable that will be called when a default value is needed for this attribute
      If both `default` and `default_factory` are set, an error is raised.
    """
    if default is not Undefined and default_factory is not None:
        raise ValueError('cannot specify both default and default_factory')

    return ModelPrivateAttr(
        default,
        default_factory=default_factory,
    )


class DeferredType:
    """
    Used to postpone field preparation, while creating recursive generic models.
    """


def is_finalvar_with_default_val(type_: Type[Any], val: Any) -> bool:
    return is_finalvar(type_) and val is not Undefined and not isinstance(val, FieldInfo)