|
import sys |
|
import pickle |
|
import hashlib |
|
import pytest |
|
|
|
try: |
|
import unittest2 as unittest |
|
except ImportError: |
|
import unittest |
|
from hypothesis import given, settings, example |
|
import hypothesis.strategies as st |
|
from .ellipticcurve import PointEdwards, INFINITY, CurveEdTw |
|
from .eddsa import ( |
|
generator_ed25519, |
|
curve_ed25519, |
|
generator_ed448, |
|
curve_ed448, |
|
PrivateKey, |
|
PublicKey, |
|
) |
|
from .ecdsa import generator_256, curve_256 |
|
from .errors import MalformedPointError |
|
from ._compat import a2b_hex, compat26_str |
|
|
|
|
|
class TestA2B_Hex(unittest.TestCase): |
|
def test_invalid_input(self): |
|
with self.assertRaises(ValueError): |
|
a2b_hex("abcdefghi") |
|
|
|
|
|
def test_ed25519_curve_compare(): |
|
assert curve_ed25519 != curve_256 |
|
|
|
|
|
def test_ed25519_and_ed448_compare(): |
|
assert curve_ed448 != curve_ed25519 |
|
|
|
|
|
def test_ed25519_and_custom_curve_compare(): |
|
a = CurveEdTw(curve_ed25519.p(), -curve_ed25519.a(), 1) |
|
|
|
assert curve_ed25519 != a |
|
|
|
|
|
def test_ed25519_and_almost_exact_curve_compare(): |
|
a = CurveEdTw(curve_ed25519.p(), curve_ed25519.a(), 1) |
|
|
|
assert curve_ed25519 != a |
|
|
|
|
|
def test_ed25519_and_same_curve_params(): |
|
a = CurveEdTw(curve_ed25519.p(), curve_ed25519.a(), curve_ed25519.d()) |
|
|
|
assert curve_ed25519 == a |
|
assert not (curve_ed25519 != a) |
|
|
|
|
|
def test_ed25519_contains_point(): |
|
g = generator_ed25519 |
|
assert curve_ed25519.contains_point(g.x(), g.y()) |
|
|
|
|
|
def test_ed25519_contains_point_bad(): |
|
assert not curve_ed25519.contains_point(1, 1) |
|
|
|
|
|
def test_ed25519_double(): |
|
a = generator_ed25519 |
|
|
|
z = a.double() |
|
|
|
assert isinstance(z, PointEdwards) |
|
|
|
x2 = int( |
|
"24727413235106541002554574571675588834622768167397638456726423" |
|
"682521233608206" |
|
) |
|
y2 = int( |
|
"15549675580280190176352668710449542251549572066445060580507079" |
|
"593062643049417" |
|
) |
|
|
|
b = PointEdwards(curve_ed25519, x2, y2, 1, x2 * y2) |
|
|
|
assert z == b |
|
assert a != b |
|
|
|
|
|
def test_ed25519_add_as_double(): |
|
a = generator_ed25519 |
|
|
|
z = a + a |
|
|
|
assert isinstance(z, PointEdwards) |
|
|
|
b = generator_ed25519.double() |
|
|
|
assert z == b |
|
|
|
|
|
def test_ed25519_double_infinity(): |
|
a = PointEdwards(curve_ed25519, 0, 1, 1, 0) |
|
|
|
z = a.double() |
|
|
|
assert z is INFINITY |
|
|
|
|
|
def test_ed25519_double_badly_encoded_infinity(): |
|
|
|
a = PointEdwards(curve_ed25519, 1, 1, 1, 0) |
|
|
|
z = a.double() |
|
|
|
assert z is INFINITY |
|
|
|
|
|
def test_ed25519_eq_with_different_z(): |
|
x = generator_ed25519.x() |
|
y = generator_ed25519.y() |
|
p = curve_ed25519.p() |
|
|
|
a = PointEdwards(curve_ed25519, x * 2 % p, y * 2 % p, 2, x * y * 2 % p) |
|
b = PointEdwards(curve_ed25519, x * 3 % p, y * 3 % p, 3, x * y * 3 % p) |
|
|
|
assert a == b |
|
|
|
assert not (a != b) |
|
|
|
|
|
def test_ed25519_eq_against_infinity(): |
|
assert generator_ed25519 != INFINITY |
|
|
|
|
|
def test_ed25519_eq_encoded_infinity_against_infinity(): |
|
a = PointEdwards(curve_ed25519, 0, 1, 1, 0) |
|
assert a == INFINITY |
|
|
|
|
|
def test_ed25519_eq_bad_encode_of_infinity_against_infinity(): |
|
|
|
|
|
a = PointEdwards(curve_ed25519, 1, 1, 1, 0) |
|
assert a == INFINITY |
|
|
|
|
|
def test_ed25519_eq_against_non_Edwards_point(): |
|
assert generator_ed25519 != generator_256 |
|
|
|
|
|
def test_ed25519_eq_against_negated_point(): |
|
g = generator_ed25519 |
|
neg = PointEdwards(curve_ed25519, -g.x(), g.y(), 1, -g.x() * g.y()) |
|
assert g != neg |
|
|
|
|
|
def test_ed25519_eq_x_different_y(): |
|
|
|
a = PointEdwards(curve_ed25519, 1, 1, 1, 1) |
|
b = PointEdwards(curve_ed25519, 1, 2, 1, 2) |
|
|
|
assert a != b |
|
|
|
|
|
def test_ed25519_mul_by_order(): |
|
g = PointEdwards( |
|
curve_ed25519, |
|
generator_ed25519.x(), |
|
generator_ed25519.y(), |
|
1, |
|
generator_ed25519.x() * generator_ed25519.y(), |
|
) |
|
|
|
assert g * generator_ed25519.order() == INFINITY |
|
|
|
|
|
def test_radd(): |
|
|
|
a = PointEdwards(curve_ed25519, 1, 1, 1, 1) |
|
|
|
p = INFINITY + a |
|
|
|
assert p == a |
|
|
|
|
|
def test_ed25519_test_normalisation_and_scaling(): |
|
x = generator_ed25519.x() |
|
y = generator_ed25519.y() |
|
p = curve_ed25519.p() |
|
|
|
a = PointEdwards(curve_ed25519, x * 11 % p, y * 11 % p, 11, x * y * 11 % p) |
|
|
|
assert a.x() == x |
|
assert a.y() == y |
|
|
|
a.scale() |
|
|
|
assert a.x() == x |
|
assert a.y() == y |
|
|
|
a.scale() |
|
|
|
assert a.x() == x |
|
assert a.y() == y |
|
|
|
|
|
def test_ed25519_add_three_times(): |
|
a = generator_ed25519 |
|
|
|
z = a + a + a |
|
|
|
x3 = int( |
|
"468967334644549386571235445953867877890461982801326656862413" |
|
"21779790909858396" |
|
) |
|
y3 = int( |
|
"832484377853344397649037712036920113830141722629755531674120" |
|
"2210403726505172" |
|
) |
|
|
|
b = PointEdwards(curve_ed25519, x3, y3, 1, x3 * y3) |
|
|
|
assert z == b |
|
|
|
|
|
def test_ed25519_add_to_infinity(): |
|
|
|
x1 = int( |
|
"427838232691226969392843410947554224151809796397784248136826" |
|
"78720006717057747" |
|
) |
|
y1 = int( |
|
"463168356949264781694283940034751631413079938662562256157830" |
|
"33603165251855960" |
|
) |
|
inf_m_1 = PointEdwards(curve_ed25519, x1, y1, 1, x1 * y1) |
|
|
|
inf = inf_m_1 + generator_ed25519 |
|
|
|
assert inf is INFINITY |
|
|
|
|
|
def test_ed25519_add_and_mul_equivalence(): |
|
g = generator_ed25519 |
|
|
|
assert g + g == g * 2 |
|
assert g + g + g == g * 3 |
|
|
|
|
|
def test_ed25519_add_literal_infinity(): |
|
g = generator_ed25519 |
|
z = g + INFINITY |
|
|
|
assert z == g |
|
|
|
|
|
def test_ed25519_add_infinity(): |
|
inf = PointEdwards(curve_ed25519, 0, 1, 1, 0) |
|
g = generator_ed25519 |
|
z = g + inf |
|
|
|
assert z == g |
|
|
|
z = inf + g |
|
|
|
assert z == g |
|
|
|
|
|
class TestEd25519(unittest.TestCase): |
|
def test_add_wrong_curves(self): |
|
with self.assertRaises(ValueError) as e: |
|
generator_ed25519 + generator_ed448 |
|
|
|
self.assertIn("different curve", str(e.exception)) |
|
|
|
def test_add_wrong_point_type(self): |
|
with self.assertRaises(ValueError) as e: |
|
generator_ed25519 + generator_256 |
|
|
|
self.assertIn("different curve", str(e.exception)) |
|
|
|
|
|
def test_generate_with_point(): |
|
x1 = int( |
|
"427838232691226969392843410947554224151809796397784248136826" |
|
"78720006717057747" |
|
) |
|
y1 = int( |
|
"463168356949264781694283940034751631413079938662562256157830" |
|
"33603165251855960" |
|
) |
|
p = PointEdwards(curve_ed25519, x1, y1, 1, x1 * y1) |
|
|
|
pk = PublicKey(generator_ed25519, b"0" * 32, public_point=p) |
|
|
|
assert pk.public_point() == p |
|
|
|
|
|
def test_ed25519_mul_to_order_min_1(): |
|
x1 = int( |
|
"427838232691226969392843410947554224151809796397784248136826" |
|
"78720006717057747" |
|
) |
|
y1 = int( |
|
"463168356949264781694283940034751631413079938662562256157830" |
|
"33603165251855960" |
|
) |
|
inf_m_1 = PointEdwards(curve_ed25519, x1, y1, 1, x1 * y1) |
|
|
|
assert generator_ed25519 * (generator_ed25519.order() - 1) == inf_m_1 |
|
|
|
|
|
def test_ed25519_mul_to_infinity(): |
|
assert generator_ed25519 * generator_ed25519.order() == INFINITY |
|
|
|
|
|
def test_ed25519_mul_to_infinity_plus_1(): |
|
g = generator_ed25519 |
|
assert g * (g.order() + 1) == g |
|
|
|
|
|
def test_ed25519_mul_and_add(): |
|
g = generator_ed25519 |
|
a = g * 128 |
|
b = g * 64 + g * 64 |
|
|
|
assert a == b |
|
|
|
|
|
def test_ed25519_mul_and_add_2(): |
|
g = generator_ed25519 |
|
|
|
a = g * 123 |
|
b = g * 120 + g * 3 |
|
|
|
assert a == b |
|
|
|
|
|
def test_ed25519_mul_infinity(): |
|
inf = PointEdwards(curve_ed25519, 0, 1, 1, 0) |
|
|
|
z = inf * 11 |
|
|
|
assert z == INFINITY |
|
|
|
|
|
def test_ed25519_mul_by_zero(): |
|
z = generator_ed25519 * 0 |
|
|
|
assert z == INFINITY |
|
|
|
|
|
def test_ed25519_mul_by_one(): |
|
z = generator_ed25519 * 1 |
|
|
|
assert z == generator_ed25519 |
|
|
|
|
|
def test_ed25519_mul_custom_point(): |
|
|
|
|
|
g = generator_ed25519 |
|
|
|
a = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) |
|
|
|
z = a * 11 |
|
|
|
assert z == g * 11 |
|
|
|
|
|
def test_ed25519_pickle(): |
|
g = generator_ed25519 |
|
assert pickle.loads(pickle.dumps(g)) == g |
|
|
|
|
|
def test_ed448_eq_against_different_curve(): |
|
assert generator_ed25519 != generator_ed448 |
|
|
|
|
|
def test_ed448_double(): |
|
g = generator_ed448 |
|
z = g.double() |
|
|
|
assert isinstance(z, PointEdwards) |
|
|
|
x2 = int( |
|
"4845591495304045936995492052586696895690942404582120401876" |
|
"6013278705691214670908136440114445572635086627683154494739" |
|
"7859048262938744149" |
|
) |
|
y2 = int( |
|
"4940887598674337276743026725267350893505445523037277237461" |
|
"2648447308771911703729389009346215770388834286503647778745" |
|
"3078312060500281069" |
|
) |
|
|
|
b = PointEdwards(curve_ed448, x2, y2, 1, x2 * y2) |
|
|
|
assert z == b |
|
assert g != b |
|
|
|
|
|
def test_ed448_add_as_double(): |
|
g = generator_ed448 |
|
z = g + g |
|
|
|
b = g.double() |
|
|
|
assert z == b |
|
|
|
|
|
def test_ed448_mul_as_double(): |
|
g = generator_ed448 |
|
z = g * 2 |
|
b = g.double() |
|
|
|
assert z == b |
|
|
|
|
|
def test_ed448_add_to_infinity(): |
|
|
|
x1 = int( |
|
"5022586839996825903617194737881084981068517190547539260353" |
|
"6473749366191269932473977736719082931859264751085238669719" |
|
"1187378895383117729" |
|
) |
|
y1 = int( |
|
"2988192100784814926760179304439306734375440401540802420959" |
|
"2824137233150618983587600353687865541878473398230323350346" |
|
"2500531545062832660" |
|
) |
|
inf_m_1 = PointEdwards(curve_ed448, x1, y1, 1, x1 * y1) |
|
|
|
inf = inf_m_1 + generator_ed448 |
|
|
|
assert inf is INFINITY |
|
|
|
|
|
def test_ed448_mul_to_infinity(): |
|
g = generator_ed448 |
|
inf = g * g.order() |
|
|
|
assert inf is INFINITY |
|
|
|
|
|
def test_ed448_mul_to_infinity_plus_1(): |
|
g = generator_ed448 |
|
|
|
z = g * (g.order() + 1) |
|
|
|
assert z == g |
|
|
|
|
|
def test_ed448_add_and_mul_equivalence(): |
|
g = generator_ed448 |
|
|
|
assert g + g == g * 2 |
|
assert g + g + g == g * 3 |
|
|
|
|
|
def test_ed25519_encode(): |
|
g = generator_ed25519 |
|
g_bytes = g.to_bytes() |
|
assert len(g_bytes) == 32 |
|
exp_bytes = ( |
|
b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
) |
|
assert g_bytes == exp_bytes |
|
|
|
|
|
def test_ed25519_decode(): |
|
exp_bytes = ( |
|
b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
) |
|
a = PointEdwards.from_bytes(curve_ed25519, exp_bytes) |
|
|
|
assert a == generator_ed25519 |
|
|
|
|
|
class TestEdwardsMalformed(unittest.TestCase): |
|
def test_invalid_point(self): |
|
exp_bytes = ( |
|
b"\x78\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
) |
|
with self.assertRaises(MalformedPointError): |
|
PointEdwards.from_bytes(curve_ed25519, exp_bytes) |
|
|
|
def test_invalid_length(self): |
|
exp_bytes = ( |
|
b"\x58\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
b"\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66\x66" |
|
b"\x66" |
|
) |
|
with self.assertRaises(MalformedPointError) as e: |
|
PointEdwards.from_bytes(curve_ed25519, exp_bytes) |
|
|
|
self.assertIn("length", str(e.exception)) |
|
|
|
def test_ed448_invalid(self): |
|
exp_bytes = b"\xff" * 57 |
|
with self.assertRaises(MalformedPointError): |
|
PointEdwards.from_bytes(curve_ed448, exp_bytes) |
|
|
|
|
|
def test_ed448_encode(): |
|
g = generator_ed448 |
|
g_bytes = g.to_bytes() |
|
assert len(g_bytes) == 57 |
|
exp_bytes = ( |
|
b"\x14\xfa\x30\xf2\x5b\x79\x08\x98\xad\xc8\xd7\x4e\x2c\x13\xbd" |
|
b"\xfd\xc4\x39\x7c\xe6\x1c\xff\xd3\x3a\xd7\xc2\xa0\x05\x1e\x9c" |
|
b"\x78\x87\x40\x98\xa3\x6c\x73\x73\xea\x4b\x62\xc7\xc9\x56\x37" |
|
b"\x20\x76\x88\x24\xbc\xb6\x6e\x71\x46\x3f\x69\x00" |
|
) |
|
assert g_bytes == exp_bytes |
|
|
|
|
|
def test_ed448_decode(): |
|
exp_bytes = ( |
|
b"\x14\xfa\x30\xf2\x5b\x79\x08\x98\xad\xc8\xd7\x4e\x2c\x13\xbd" |
|
b"\xfd\xc4\x39\x7c\xe6\x1c\xff\xd3\x3a\xd7\xc2\xa0\x05\x1e\x9c" |
|
b"\x78\x87\x40\x98\xa3\x6c\x73\x73\xea\x4b\x62\xc7\xc9\x56\x37" |
|
b"\x20\x76\x88\x24\xbc\xb6\x6e\x71\x46\x3f\x69\x00" |
|
) |
|
|
|
a = PointEdwards.from_bytes(curve_ed448, exp_bytes) |
|
|
|
assert a == generator_ed448 |
|
|
|
|
|
class TestEdDSAEquality(unittest.TestCase): |
|
def test_equal_public_points(self): |
|
key1 = PublicKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PublicKey(generator_ed25519, b"\x01" * 32) |
|
|
|
self.assertEqual(key1, key2) |
|
|
|
self.assertFalse(key1 != key2) |
|
|
|
def test_unequal_public_points(self): |
|
key1 = PublicKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PublicKey(generator_ed25519, b"\x03" * 32) |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
def test_unequal_to_string(self): |
|
key1 = PublicKey(generator_ed25519, b"\x01" * 32) |
|
key2 = b"\x01" * 32 |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
def test_unequal_publickey_curves(self): |
|
key1 = PublicKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PublicKey(generator_ed448, b"\x03" * 56 + b"\x00") |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
self.assertTrue(key1 != key2) |
|
|
|
def test_equal_private_keys(self): |
|
key1 = PrivateKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PrivateKey(generator_ed25519, b"\x01" * 32) |
|
|
|
self.assertEqual(key1, key2) |
|
|
|
self.assertFalse(key1 != key2) |
|
|
|
def test_unequal_private_keys(self): |
|
key1 = PrivateKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PrivateKey(generator_ed25519, b"\x02" * 32) |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
self.assertTrue(key1 != key2) |
|
|
|
def test_unequal_privatekey_to_string(self): |
|
key1 = PrivateKey(generator_ed25519, b"\x01" * 32) |
|
key2 = b"\x01" * 32 |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
def test_unequal_privatekey_curves(self): |
|
key1 = PrivateKey(generator_ed25519, b"\x01" * 32) |
|
key2 = PrivateKey(generator_ed448, b"\x01" * 57) |
|
|
|
self.assertNotEqual(key1, key2) |
|
|
|
|
|
class TestInvalidEdDSAInputs(unittest.TestCase): |
|
def test_wrong_length_of_private_key(self): |
|
with self.assertRaises(ValueError): |
|
PrivateKey(generator_ed25519, b"\x01" * 31) |
|
|
|
def test_wrong_length_of_public_key(self): |
|
with self.assertRaises(ValueError): |
|
PublicKey(generator_ed25519, b"\x01" * 33) |
|
|
|
def test_wrong_cofactor_curve(self): |
|
ed_c = curve_ed25519 |
|
|
|
def _hash(data): |
|
return hashlib.new("sha512", compat26_str(data)).digest() |
|
|
|
curve = CurveEdTw(ed_c.p(), ed_c.a(), ed_c.d(), 1, _hash) |
|
g = generator_ed25519 |
|
fake_gen = PointEdwards(curve, g.x(), g.y(), 1, g.x() * g.y()) |
|
|
|
with self.assertRaises(ValueError) as e: |
|
PrivateKey(fake_gen, g.to_bytes()) |
|
|
|
self.assertIn("cofactor", str(e.exception)) |
|
|
|
def test_invalid_signature_length(self): |
|
key = PublicKey(generator_ed25519, b"\x01" * 32) |
|
|
|
with self.assertRaises(ValueError) as e: |
|
key.verify(b"", b"\x01" * 65) |
|
|
|
self.assertIn("length", str(e.exception)) |
|
|
|
def test_changing_public_key(self): |
|
key = PublicKey(generator_ed25519, b"\x01" * 32) |
|
|
|
g = key.point |
|
|
|
new_g = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) |
|
|
|
key.point = new_g |
|
|
|
self.assertEqual(g, key.point) |
|
|
|
def test_changing_public_key_to_different_point(self): |
|
key = PublicKey(generator_ed25519, b"\x01" * 32) |
|
|
|
with self.assertRaises(ValueError) as e: |
|
key.point = generator_ed25519 |
|
|
|
self.assertIn("coordinates", str(e.exception)) |
|
|
|
def test_invalid_s_value(self): |
|
key = PublicKey( |
|
generator_ed25519, |
|
b"\xd7\x5a\x98\x01\x82\xb1\x0a\xb7\xd5\x4b\xfe\xd3\xc9\x64\x07\x3a" |
|
b"\x0e\xe1\x72\xf3\xda\xa6\x23\x25\xaf\x02\x1a\x68\xf7\x07\x51\x1a", |
|
) |
|
sig_valid = bytearray( |
|
b"\xe5\x56\x43\x00\xc3\x60\xac\x72\x90\x86\xe2\xcc\x80\x6e\x82\x8a" |
|
b"\x84\x87\x7f\x1e\xb8\xe5\xd9\x74\xd8\x73\xe0\x65\x22\x49\x01\x55" |
|
b"\x5f\xb8\x82\x15\x90\xa3\x3b\xac\xc6\x1e\x39\x70\x1c\xf9\xb4\x6b" |
|
b"\xd2\x5b\xf5\xf0\x59\x5b\xbe\x24\x65\x51\x41\x43\x8e\x7a\x10\x0b" |
|
) |
|
|
|
self.assertTrue(key.verify(b"", sig_valid)) |
|
|
|
sig_invalid = bytearray(sig_valid) |
|
sig_invalid[-1] = 0xFF |
|
|
|
with self.assertRaises(ValueError): |
|
key.verify(b"", sig_invalid) |
|
|
|
def test_invalid_r_value(self): |
|
key = PublicKey( |
|
generator_ed25519, |
|
b"\xd7\x5a\x98\x01\x82\xb1\x0a\xb7\xd5\x4b\xfe\xd3\xc9\x64\x07\x3a" |
|
b"\x0e\xe1\x72\xf3\xda\xa6\x23\x25\xaf\x02\x1a\x68\xf7\x07\x51\x1a", |
|
) |
|
sig_valid = bytearray( |
|
b"\xe5\x56\x43\x00\xc3\x60\xac\x72\x90\x86\xe2\xcc\x80\x6e\x82\x8a" |
|
b"\x84\x87\x7f\x1e\xb8\xe5\xd9\x74\xd8\x73\xe0\x65\x22\x49\x01\x55" |
|
b"\x5f\xb8\x82\x15\x90\xa3\x3b\xac\xc6\x1e\x39\x70\x1c\xf9\xb4\x6b" |
|
b"\xd2\x5b\xf5\xf0\x59\x5b\xbe\x24\x65\x51\x41\x43\x8e\x7a\x10\x0b" |
|
) |
|
|
|
self.assertTrue(key.verify(b"", sig_valid)) |
|
|
|
sig_invalid = bytearray(sig_valid) |
|
sig_invalid[0] = 0xE0 |
|
|
|
with self.assertRaises(ValueError): |
|
key.verify(b"", sig_invalid) |
|
|
|
|
|
HYP_SETTINGS = dict() |
|
if "--fast" in sys.argv: |
|
HYP_SETTINGS["max_examples"] = 2 |
|
else: |
|
HYP_SETTINGS["max_examples"] = 10 |
|
|
|
|
|
@settings(**HYP_SETTINGS) |
|
@example(1) |
|
@example(5) |
|
@given(st.integers(min_value=1, max_value=int(generator_ed25519.order() - 1))) |
|
def test_ed25519_encode_decode(multiple): |
|
a = generator_ed25519 * multiple |
|
|
|
b = PointEdwards.from_bytes(curve_ed25519, a.to_bytes()) |
|
|
|
assert a == b |
|
|
|
|
|
@settings(**HYP_SETTINGS) |
|
@example(1) |
|
@example(2) |
|
@given(st.integers(min_value=1, max_value=int(generator_ed448.order() - 1))) |
|
def test_ed448_encode_decode(multiple): |
|
a = generator_ed448 * multiple |
|
|
|
b = PointEdwards.from_bytes(curve_ed448, a.to_bytes()) |
|
|
|
assert a == b |
|
|
|
|
|
@settings(**HYP_SETTINGS) |
|
@example(1) |
|
@example(2) |
|
@given(st.integers(min_value=1, max_value=int(generator_ed25519.order()) - 1)) |
|
def test_ed25519_mul_precompute_vs_naf(multiple): |
|
"""Compare multiplication with and without precomputation.""" |
|
g = generator_ed25519 |
|
new_g = PointEdwards(curve_ed25519, g.x(), g.y(), 1, g.x() * g.y()) |
|
|
|
assert g * multiple == multiple * new_g |
|
|
|
|
|
|
|
TEST_VECTORS = [ |
|
|
|
( |
|
generator_ed25519, |
|
"9d61b19deffd5a60ba844af492ec2cc4" "4449c5697b326919703bac031cae7f60", |
|
"d75a980182b10ab7d54bfed3c964073a" "0ee172f3daa62325af021a68f707511a", |
|
"", |
|
"e5564300c360ac729086e2cc806e828a" |
|
"84877f1eb8e5d974d873e06522490155" |
|
"5fb8821590a33bacc61e39701cf9b46b" |
|
"d25bf5f0595bbe24655141438e7a100b", |
|
), |
|
|
|
( |
|
generator_ed25519, |
|
"4ccd089b28ff96da9db6c346ec114e0f" "5b8a319f35aba624da8cf6ed4fb8a6fb", |
|
"3d4017c3e843895a92b70aa74d1b7ebc" "9c982ccf2ec4968cc0cd55f12af4660c", |
|
"72", |
|
"92a009a9f0d4cab8720e820b5f642540" |
|
"a2b27b5416503f8fb3762223ebdb69da" |
|
"085ac1e43e15996e458f3613d0f11d8c" |
|
"387b2eaeb4302aeeb00d291612bb0c00", |
|
), |
|
|
|
( |
|
generator_ed25519, |
|
"c5aa8df43f9f837bedb7442f31dcb7b1" "66d38535076f094b85ce3a2e0b4458f7", |
|
"fc51cd8e6218a1a38da47ed00230f058" "0816ed13ba3303ac5deb911548908025", |
|
"af82", |
|
"6291d657deec24024827e69c3abe01a3" |
|
"0ce548a284743a445e3680d7db5ac3ac" |
|
"18ff9b538d16f290ae67f760984dc659" |
|
"4a7c15e9716ed28dc027beceea1ec40a", |
|
), |
|
|
|
( |
|
generator_ed25519, |
|
"f5e5767cf153319517630f226876b86c" "8160cc583bc013744c6bf255f5cc0ee5", |
|
"278117fc144c72340f67d0f2316e8386" "ceffbf2b2428c9c51fef7c597f1d426e", |
|
"08b8b2b733424243760fe426a4b54908" |
|
"632110a66c2f6591eabd3345e3e4eb98" |
|
"fa6e264bf09efe12ee50f8f54e9f77b1" |
|
"e355f6c50544e23fb1433ddf73be84d8" |
|
"79de7c0046dc4996d9e773f4bc9efe57" |
|
"38829adb26c81b37c93a1b270b20329d" |
|
"658675fc6ea534e0810a4432826bf58c" |
|
"941efb65d57a338bbd2e26640f89ffbc" |
|
"1a858efcb8550ee3a5e1998bd177e93a" |
|
"7363c344fe6b199ee5d02e82d522c4fe" |
|
"ba15452f80288a821a579116ec6dad2b" |
|
"3b310da903401aa62100ab5d1a36553e" |
|
"06203b33890cc9b832f79ef80560ccb9" |
|
"a39ce767967ed628c6ad573cb116dbef" |
|
"efd75499da96bd68a8a97b928a8bbc10" |
|
"3b6621fcde2beca1231d206be6cd9ec7" |
|
"aff6f6c94fcd7204ed3455c68c83f4a4" |
|
"1da4af2b74ef5c53f1d8ac70bdcb7ed1" |
|
"85ce81bd84359d44254d95629e9855a9" |
|
"4a7c1958d1f8ada5d0532ed8a5aa3fb2" |
|
"d17ba70eb6248e594e1a2297acbbb39d" |
|
"502f1a8c6eb6f1ce22b3de1a1f40cc24" |
|
"554119a831a9aad6079cad88425de6bd" |
|
"e1a9187ebb6092cf67bf2b13fd65f270" |
|
"88d78b7e883c8759d2c4f5c65adb7553" |
|
"878ad575f9fad878e80a0c9ba63bcbcc" |
|
"2732e69485bbc9c90bfbd62481d9089b" |
|
"eccf80cfe2df16a2cf65bd92dd597b07" |
|
"07e0917af48bbb75fed413d238f5555a" |
|
"7a569d80c3414a8d0859dc65a46128ba" |
|
"b27af87a71314f318c782b23ebfe808b" |
|
"82b0ce26401d2e22f04d83d1255dc51a" |
|
"ddd3b75a2b1ae0784504df543af8969b" |
|
"e3ea7082ff7fc9888c144da2af58429e" |
|
"c96031dbcad3dad9af0dcbaaaf268cb8" |
|
"fcffead94f3c7ca495e056a9b47acdb7" |
|
"51fb73e666c6c655ade8297297d07ad1" |
|
"ba5e43f1bca32301651339e22904cc8c" |
|
"42f58c30c04aafdb038dda0847dd988d" |
|
"cda6f3bfd15c4b4c4525004aa06eeff8" |
|
"ca61783aacec57fb3d1f92b0fe2fd1a8" |
|
"5f6724517b65e614ad6808d6f6ee34df" |
|
"f7310fdc82aebfd904b01e1dc54b2927" |
|
"094b2db68d6f903b68401adebf5a7e08" |
|
"d78ff4ef5d63653a65040cf9bfd4aca7" |
|
"984a74d37145986780fc0b16ac451649" |
|
"de6188a7dbdf191f64b5fc5e2ab47b57" |
|
"f7f7276cd419c17a3ca8e1b939ae49e4" |
|
"88acba6b965610b5480109c8b17b80e1" |
|
"b7b750dfc7598d5d5011fd2dcc5600a3" |
|
"2ef5b52a1ecc820e308aa342721aac09" |
|
"43bf6686b64b2579376504ccc493d97e" |
|
"6aed3fb0f9cd71a43dd497f01f17c0e2" |
|
"cb3797aa2a2f256656168e6c496afc5f" |
|
"b93246f6b1116398a346f1a641f3b041" |
|
"e989f7914f90cc2c7fff357876e506b5" |
|
"0d334ba77c225bc307ba537152f3f161" |
|
"0e4eafe595f6d9d90d11faa933a15ef1" |
|
"369546868a7f3a45a96768d40fd9d034" |
|
"12c091c6315cf4fde7cb68606937380d" |
|
"b2eaaa707b4c4185c32eddcdd306705e" |
|
"4dc1ffc872eeee475a64dfac86aba41c" |
|
"0618983f8741c5ef68d3a101e8a3b8ca" |
|
"c60c905c15fc910840b94c00a0b9d0", |
|
"0aab4c900501b3e24d7cdf4663326a3a" |
|
"87df5e4843b2cbdb67cbf6e460fec350" |
|
"aa5371b1508f9f4528ecea23c436d94b" |
|
"5e8fcd4f681e30a6ac00a9704a188a03", |
|
), |
|
|
|
( |
|
generator_ed25519, |
|
"833fe62409237b9d62ec77587520911e" "9a759cec1d19755b7da901b96dca3d42", |
|
"ec172b93ad5e563bf4932c70e1245034" "c35467ef2efd4d64ebf819683467e2bf", |
|
"ddaf35a193617abacc417349ae204131" |
|
"12e6fa4e89a97ea20a9eeee64b55d39a" |
|
"2192992a274fc1a836ba3c23a3feebbd" |
|
"454d4423643ce80e2a9ac94fa54ca49f", |
|
"dc2a4459e7369633a52b1bf277839a00" |
|
"201009a3efbf3ecb69bea2186c26b589" |
|
"09351fc9ac90b3ecfdfbc7c66431e030" |
|
"3dca179c138ac17ad9bef1177331a704", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"6c82a562cb808d10d632be89c8513ebf" |
|
"6c929f34ddfa8c9f63c9960ef6e348a3" |
|
"528c8a3fcc2f044e39a3fc5b94492f8f" |
|
"032e7549a20098f95b", |
|
"5fd7449b59b461fd2ce787ec616ad46a" |
|
"1da1342485a70e1f8a0ea75d80e96778" |
|
"edf124769b46c7061bd6783df1e50f6c" |
|
"d1fa1abeafe8256180", |
|
"", |
|
"533a37f6bbe457251f023c0d88f976ae" |
|
"2dfb504a843e34d2074fd823d41a591f" |
|
"2b233f034f628281f2fd7a22ddd47d78" |
|
"28c59bd0a21bfd3980ff0d2028d4b18a" |
|
"9df63e006c5d1c2d345b925d8dc00b41" |
|
"04852db99ac5c7cdda8530a113a0f4db" |
|
"b61149f05a7363268c71d95808ff2e65" |
|
"2600", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"c4eab05d357007c632f3dbb48489924d" |
|
"552b08fe0c353a0d4a1f00acda2c463a" |
|
"fbea67c5e8d2877c5e3bc397a659949e" |
|
"f8021e954e0a12274e", |
|
"43ba28f430cdff456ae531545f7ecd0a" |
|
"c834a55d9358c0372bfa0c6c6798c086" |
|
"6aea01eb00742802b8438ea4cb82169c" |
|
"235160627b4c3a9480", |
|
"03", |
|
"26b8f91727bd62897af15e41eb43c377" |
|
"efb9c610d48f2335cb0bd0087810f435" |
|
"2541b143c4b981b7e18f62de8ccdf633" |
|
"fc1bf037ab7cd779805e0dbcc0aae1cb" |
|
"cee1afb2e027df36bc04dcecbf154336" |
|
"c19f0af7e0a6472905e799f1953d2a0f" |
|
"f3348ab21aa4adafd1d234441cf807c0" |
|
"3a00", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"cd23d24f714274e744343237b93290f5" |
|
"11f6425f98e64459ff203e8985083ffd" |
|
"f60500553abc0e05cd02184bdb89c4cc" |
|
"d67e187951267eb328", |
|
"dcea9e78f35a1bf3499a831b10b86c90" |
|
"aac01cd84b67a0109b55a36e9328b1e3" |
|
"65fce161d71ce7131a543ea4cb5f7e9f" |
|
"1d8b00696447001400", |
|
"0c3e544074ec63b0265e0c", |
|
"1f0a8888ce25e8d458a21130879b840a" |
|
"9089d999aaba039eaf3e3afa090a09d3" |
|
"89dba82c4ff2ae8ac5cdfb7c55e94d5d" |
|
"961a29fe0109941e00b8dbdeea6d3b05" |
|
"1068df7254c0cdc129cbe62db2dc957d" |
|
"bb47b51fd3f213fb8698f064774250a5" |
|
"028961c9bf8ffd973fe5d5c206492b14" |
|
"0e00", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"258cdd4ada32ed9c9ff54e63756ae582" |
|
"fb8fab2ac721f2c8e676a72768513d93" |
|
"9f63dddb55609133f29adf86ec9929dc" |
|
"cb52c1c5fd2ff7e21b", |
|
"3ba16da0c6f2cc1f30187740756f5e79" |
|
"8d6bc5fc015d7c63cc9510ee3fd44adc" |
|
"24d8e968b6e46e6f94d19b945361726b" |
|
"d75e149ef09817f580", |
|
"64a65f3cdedcdd66811e2915", |
|
"7eeeab7c4e50fb799b418ee5e3197ff6" |
|
"bf15d43a14c34389b59dd1a7b1b85b4a" |
|
"e90438aca634bea45e3a2695f1270f07" |
|
"fdcdf7c62b8efeaf00b45c2c96ba457e" |
|
"b1a8bf075a3db28e5c24f6b923ed4ad7" |
|
"47c3c9e03c7079efb87cb110d3a99861" |
|
"e72003cbae6d6b8b827e4e6c143064ff" |
|
"3c00", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"7ef4e84544236752fbb56b8f31a23a10" |
|
"e42814f5f55ca037cdcc11c64c9a3b29" |
|
"49c1bb60700314611732a6c2fea98eeb" |
|
"c0266a11a93970100e", |
|
"b3da079b0aa493a5772029f0467baebe" |
|
"e5a8112d9d3a22532361da294f7bb381" |
|
"5c5dc59e176b4d9f381ca0938e13c6c0" |
|
"7b174be65dfa578e80", |
|
"64a65f3cdedcdd66811e2915e7", |
|
"6a12066f55331b6c22acd5d5bfc5d712" |
|
"28fbda80ae8dec26bdd306743c5027cb" |
|
"4890810c162c027468675ecf645a8317" |
|
"6c0d7323a2ccde2d80efe5a1268e8aca" |
|
"1d6fbc194d3f77c44986eb4ab4177919" |
|
"ad8bec33eb47bbb5fc6e28196fd1caf5" |
|
"6b4e7e0ba5519234d047155ac727a105" |
|
"3100", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"d65df341ad13e008567688baedda8e9d" |
|
"cdc17dc024974ea5b4227b6530e339bf" |
|
"f21f99e68ca6968f3cca6dfe0fb9f4fa" |
|
"b4fa135d5542ea3f01", |
|
"df9705f58edbab802c7f8363cfe5560a" |
|
"b1c6132c20a9f1dd163483a26f8ac53a" |
|
"39d6808bf4a1dfbd261b099bb03b3fb5" |
|
"0906cb28bd8a081f00", |
|
"bd0f6a3747cd561bdddf4640a332461a" |
|
"4a30a12a434cd0bf40d766d9c6d458e5" |
|
"512204a30c17d1f50b5079631f64eb31" |
|
"12182da3005835461113718d1a5ef944", |
|
"554bc2480860b49eab8532d2a533b7d5" |
|
"78ef473eeb58c98bb2d0e1ce488a98b1" |
|
"8dfde9b9b90775e67f47d4a1c3482058" |
|
"efc9f40d2ca033a0801b63d45b3b722e" |
|
"f552bad3b4ccb667da350192b61c508c" |
|
"f7b6b5adadc2c8d9a446ef003fb05cba" |
|
"5f30e88e36ec2703b349ca229c267083" |
|
"3900", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"2ec5fe3c17045abdb136a5e6a913e32a" |
|
"b75ae68b53d2fc149b77e504132d3756" |
|
"9b7e766ba74a19bd6162343a21c8590a" |
|
"a9cebca9014c636df5", |
|
"79756f014dcfe2079f5dd9e718be4171" |
|
"e2ef2486a08f25186f6bff43a9936b9b" |
|
"fe12402b08ae65798a3d81e22e9ec80e" |
|
"7690862ef3d4ed3a00", |
|
"15777532b0bdd0d1389f636c5f6b9ba7" |
|
"34c90af572877e2d272dd078aa1e567c" |
|
"fa80e12928bb542330e8409f31745041" |
|
"07ecd5efac61ae7504dabe2a602ede89" |
|
"e5cca6257a7c77e27a702b3ae39fc769" |
|
"fc54f2395ae6a1178cab4738e543072f" |
|
"c1c177fe71e92e25bf03e4ecb72f47b6" |
|
"4d0465aaea4c7fad372536c8ba516a60" |
|
"39c3c2a39f0e4d832be432dfa9a706a6" |
|
"e5c7e19f397964ca4258002f7c0541b5" |
|
"90316dbc5622b6b2a6fe7a4abffd9610" |
|
"5eca76ea7b98816af0748c10df048ce0" |
|
"12d901015a51f189f3888145c03650aa" |
|
"23ce894c3bd889e030d565071c59f409" |
|
"a9981b51878fd6fc110624dcbcde0bf7" |
|
"a69ccce38fabdf86f3bef6044819de11", |
|
"c650ddbb0601c19ca11439e1640dd931" |
|
"f43c518ea5bea70d3dcde5f4191fe53f" |
|
"00cf966546b72bcc7d58be2b9badef28" |
|
"743954e3a44a23f880e8d4f1cfce2d7a" |
|
"61452d26da05896f0a50da66a239a8a1" |
|
"88b6d825b3305ad77b73fbac0836ecc6" |
|
"0987fd08527c1a8e80d5823e65cafe2a" |
|
"3d00", |
|
), |
|
|
|
( |
|
generator_ed448, |
|
"872d093780f5d3730df7c212664b37b8" |
|
"a0f24f56810daa8382cd4fa3f77634ec" |
|
"44dc54f1c2ed9bea86fafb7632d8be19" |
|
"9ea165f5ad55dd9ce8", |
|
"a81b2e8a70a5ac94ffdbcc9badfc3feb" |
|
"0801f258578bb114ad44ece1ec0e799d" |
|
"a08effb81c5d685c0c56f64eecaef8cd" |
|
"f11cc38737838cf400", |
|
"6ddf802e1aae4986935f7f981ba3f035" |
|
"1d6273c0a0c22c9c0e8339168e675412" |
|
"a3debfaf435ed651558007db4384b650" |
|
"fcc07e3b586a27a4f7a00ac8a6fec2cd" |
|
"86ae4bf1570c41e6a40c931db27b2faa" |
|
"15a8cedd52cff7362c4e6e23daec0fbc" |
|
"3a79b6806e316efcc7b68119bf46bc76" |
|
"a26067a53f296dafdbdc11c77f7777e9" |
|
"72660cf4b6a9b369a6665f02e0cc9b6e" |
|
"dfad136b4fabe723d2813db3136cfde9" |
|
"b6d044322fee2947952e031b73ab5c60" |
|
"3349b307bdc27bc6cb8b8bbd7bd32321" |
|
"9b8033a581b59eadebb09b3c4f3d2277" |
|
"d4f0343624acc817804728b25ab79717" |
|
"2b4c5c21a22f9c7839d64300232eb66e" |
|
"53f31c723fa37fe387c7d3e50bdf9813" |
|
"a30e5bb12cf4cd930c40cfb4e1fc6225" |
|
"92a49588794494d56d24ea4b40c89fc0" |
|
"596cc9ebb961c8cb10adde976a5d602b" |
|
"1c3f85b9b9a001ed3c6a4d3b1437f520" |
|
"96cd1956d042a597d561a596ecd3d173" |
|
"5a8d570ea0ec27225a2c4aaff26306d1" |
|
"526c1af3ca6d9cf5a2c98f47e1c46db9" |
|
"a33234cfd4d81f2c98538a09ebe76998" |
|
"d0d8fd25997c7d255c6d66ece6fa56f1" |
|
"1144950f027795e653008f4bd7ca2dee" |
|
"85d8e90f3dc315130ce2a00375a318c7" |
|
"c3d97be2c8ce5b6db41a6254ff264fa6" |
|
"155baee3b0773c0f497c573f19bb4f42" |
|
"40281f0b1f4f7be857a4e59d416c06b4" |
|
"c50fa09e1810ddc6b1467baeac5a3668" |
|
"d11b6ecaa901440016f389f80acc4db9" |
|
"77025e7f5924388c7e340a732e554440" |
|
"e76570f8dd71b7d640b3450d1fd5f041" |
|
"0a18f9a3494f707c717b79b4bf75c984" |
|
"00b096b21653b5d217cf3565c9597456" |
|
"f70703497a078763829bc01bb1cbc8fa" |
|
"04eadc9a6e3f6699587a9e75c94e5bab" |
|
"0036e0b2e711392cff0047d0d6b05bd2" |
|
"a588bc109718954259f1d86678a579a3" |
|
"120f19cfb2963f177aeb70f2d4844826" |
|
"262e51b80271272068ef5b3856fa8535" |
|
"aa2a88b2d41f2a0e2fda7624c2850272" |
|
"ac4a2f561f8f2f7a318bfd5caf969614" |
|
"9e4ac824ad3460538fdc25421beec2cc" |
|
"6818162d06bbed0c40a387192349db67" |
|
"a118bada6cd5ab0140ee273204f628aa" |
|
"d1c135f770279a651e24d8c14d75a605" |
|
"9d76b96a6fd857def5e0b354b27ab937" |
|
"a5815d16b5fae407ff18222c6d1ed263" |
|
"be68c95f32d908bd895cd76207ae7264" |
|
"87567f9a67dad79abec316f683b17f2d" |
|
"02bf07e0ac8b5bc6162cf94697b3c27c" |
|
"d1fea49b27f23ba2901871962506520c" |
|
"392da8b6ad0d99f7013fbc06c2c17a56" |
|
"9500c8a7696481c1cd33e9b14e40b82e" |
|
"79a5f5db82571ba97bae3ad3e0479515" |
|
"bb0e2b0f3bfcd1fd33034efc6245eddd" |
|
"7ee2086ddae2600d8ca73e214e8c2b0b" |
|
"db2b047c6a464a562ed77b73d2d841c4" |
|
"b34973551257713b753632efba348169" |
|
"abc90a68f42611a40126d7cb21b58695" |
|
"568186f7e569d2ff0f9e745d0487dd2e" |
|
"b997cafc5abf9dd102e62ff66cba87", |
|
"e301345a41a39a4d72fff8df69c98075" |
|
"a0cc082b802fc9b2b6bc503f926b65bd" |
|
"df7f4c8f1cb49f6396afc8a70abe6d8a" |
|
"ef0db478d4c6b2970076c6a0484fe76d" |
|
"76b3a97625d79f1ce240e7c576750d29" |
|
"5528286f719b413de9ada3e8eb78ed57" |
|
"3603ce30d8bb761785dc30dbc320869e" |
|
"1a00", |
|
), |
|
] |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"generator,private_key,public_key,message,signature", |
|
TEST_VECTORS, |
|
) |
|
def test_vectors(generator, private_key, public_key, message, signature): |
|
private_key = a2b_hex(private_key) |
|
public_key = a2b_hex(public_key) |
|
message = a2b_hex(message) |
|
signature = a2b_hex(signature) |
|
|
|
sig_key = PrivateKey(generator, private_key) |
|
ver_key = PublicKey(generator, public_key) |
|
|
|
assert sig_key.public_key().public_key() == ver_key.public_key() |
|
|
|
gen_sig = sig_key.sign(message) |
|
|
|
assert gen_sig == signature |
|
|
|
assert ver_key.verify(message, signature) |
|
|